Green Artificial Intelligence and Quantization in Deep Learning Models
Abstract
Concerns about the environment are playing an increasingly important role in society. Artificial Intelligence (AI), through Deep Learning (DL), offers useful tools for dealing with environmental issues. Despite the growing potential of DL models, they often require a lot of computing power, resulting in high levels of energy consumption and carbon footprint. Green AI aims to develop DL models that balance energy efficiency and performance in order to reduce environmental impact. This work focuses on quantization as a way of achieving the goals of Green AI, comparing how mixed-precision quantization impacts the energy consumption and performance of some neural networks for computer vision. The experimental results show that quantization can lead to the construction of more energy-efficient yet effective models, promoting a more sustainable approach.
References
Amodei, D. and Hernandez, D. (2018). AI and Compute. [link]. Acesso em: 27 set. 2024.
Bouza, L., Bugeau, A., and Lannelongue, L. (2023). How to estimate carbon footprint when training deep learning models? a guide and review. Environmental Research Communications, 5(11):115014.
Breder, G., Brum, D., Dirk, L., and Ferro, M. (2024). O paradoxo da ia para sustentabilidade e a sustentabilidade da ia. In Anais do V Workshop sobre as Implicações da Computação na Sociedade, pages 105–116, Porto Alegre, RS, Brasil. SBC.
Desislavov, R., Martínez-Plumed, F., and Hernández-Orallo, J. (2023). Trends in ai inference energy consumption: Beyond the performance-vs-parameter laws of deep learning. Sustainable Computing: Informatics and Systems, 38:100857.
Ferraro, V., Gullo, G., Costa, D., and Moura, P. (2024). Aprendizagem profunda e inteligência artificial verde: Caminhos para um futuro mais sustentável. In Anais do XV Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais, pages 159–168, Porto Alegre, RS, Brasil. SBC.
Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., and Keutzer, K. (2021). A survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. arXiv.org.
Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical Report TR-2009, University of Toronto.
Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T. (2019). Quantifying the carbon emissions of machine learning. arXiv.org.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.
Lenherr, N., Pawlitzek, R., and Michel, B. (2021). New universal sustainability metrics to assess edge intelligence. Sustainable Computing: Informatics and Systems, 31:100580.
Lottick, K., Susai, S., Friedler, S. A., and Wilson, J. P. (2019). Energy usage reports: Environmental awareness as part of algorithmic accountability. Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT*).
Luccioni, S., Jernite, Y., and Strubell, E. (2024). Power hungry processing: Watts driving the cost of ai deployment? In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’24, page 85–99, New York, NY, USA. Association for Computing Machinery.
Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., and Wu, H. (2018). Mixed precision training.
Organização das Nações Unidas (2015). Transformando nosso mundo: a agenda 2030 para o desenvolvimento sustentável. [link]. Acesso em: 12 mar. 2025.
Rajput, S. and Sharma, T. (2024). Benchmarking emerging deep learning quantization methods for energy efficiency. In 2024 IEEE 21st International Conference on Software Architecture Companion (ICSA-C), pages 238–242.
Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. (2020). Green ai. Communications of the ACM, 63(12):54–63.
Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (ICLR). arXiv:1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pages 1–9.
Wolff Anthony, L. F., Kanding, B., and Selvan, R. (2020). Carbontracker: Tracking and predicting the carbon footprint of training deep learning models. [link].
