Usando análises sociais na identificação de nós relevantes em um cenário multi-redes: Operação Licitante Fantasma, um estudo de caso

Resumo


Este artigo propõe o modelo NDNS (Nodes Detection using Network Science) que, usando redes complexas, busca encontrar os nós mais relevantes, em um cenário multi-redes, de forma mais eficiente do que medidas de centralidade estabelecidas. O artigo utiliza, como estudo de caso, uma investigação de corrupção em licitações públicas no Brasil – Operação de Licitante Fantasma. Considerando um período de quatro anos de investigações, o NDNS, quando comparado a quatro medidas de centralidade (betweenness, eigenvector, weighted degree, page rank e sua média geométrica normalizada), alcançou uma precisão de 93% e uma revocação de 94% na detecção de valores fraudulentos contra 38% e 51%, respectivamente, das segundas medidas mais bem posicionadas.

Palavras-chave: redes sociais, análise de redes sociais, detecção de fraudes, modelo para detecção de nós em redes complexas

Referências

Balaniuk, Remis, Pierre Bessiere, Emmanuel Mazer, and Paulo Cobbe. 2013. “Collusion and Corruption Risk Analysis Using Naïve Bayes Classifiers.” In Communications in Computer and Information Science. https://doi.org/10.1007/978-3-642-42017-7_7. D3

Bansal, Rashi, Nishant Gaur, and Shailendra Narayan Singh. 2016. “Outlier Detection: Applications and Techniques in Data Mining.” In Proceedings of the 2016 6th International Conference - Cloud System and Big Data Engineering, Confluence 2016. https://doi.org/10.1109/CONFLUENCE.2016.7508146. D3

Beveridge, Andrew, and Jie Shan. 2016. “Network of Thrones.” Math Horizons. https://doi.org/10.4169/mathhorizons.23.4.18. D3

Bhowmik, Rekha. 2008. “Data Mining Techniques in Fraud Detection.” Journal of Digital Forensics, Security and Law. https://doi.org/10.15394/jdfsl.2008.1040. D3

Boccaletti, Stefano, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. 2006. “Complex Networks: Structure and Dynamics.” Physics Reports. https://doi.org/10.1016/j.physrep.2005.10.009. D3

Bonacich, Phillip. 2007. “Some Unique Properties of Eigenvector Centrality.” Social Networks. https://doi.org/10.1016/j.socnet.2007.04.002. D3

Carvalho, José Carlos Oliveira. 2014. Por Dentro Das Fraudes: Como São Feitas, Como Denunciá-Las, Como Evitá-Las. Edited by Digitaliza Brasil. 1st ed. D3

Costa, Carlos J., and Manuela Aparicio. 2011. “Using Data Mining to Help Auditors.” In Creating Global Competitive Economies: A 360-Degree Approach - Proceedings of the 17th International Business Information Management Association Conference, IBIMA 2011. D3

Cunha, Flávia Ceccato, Rodrigues, and Maurício Soares Bugarin. 2014. “Lei de Benford e Auditoria de Obras Públicas: Uma Análise de Sobrepreço Na Reforma Do Maracanã.” Revista Do TCU, 48–53. https://revista.tcu.gov.br/ojs/index.php/RTCU/article/view/63. D3

Diário Digital. 2017. “PF e CGU Deflagram Operação ‘Licitante Fantasma,’” March 21, 2017. http://www.diariodigital.com.br/policia/pf-e-cgu-deflagram-operacao-licitante-fantasma/155891/. D3

Federal, Polícia. 2017. “PF Desarticula Organização Criminosa Que Fraudava Licitações No MS.” 2017. http://www.pf.gov.br/agencia/noticias/2017/03/pf-desarticula-organizacao-criminosa-que-fraudava-licitacoes-no-ms. D3

Fire, Michael, and Carlos Guestrin. 2020. “The Rise and Fall of Network Stars: Analyzing 2.5 Million Graphs to Reveal How High-Degree Vertices Emerge over Time.” Information Processing and Management. https://doi.org/10.1016/j.ipm.2019.05.002. D3

Ghedini Ralha, Célia, and Carlos Vinícius Sarmento Silva. 2012. “A Multi-Agent Data Mining System for Cartel Detection in Brazilian Government Procurement.” Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2012.04.037. D3

Hu, Bo, Nuno Carvalho, Loredana Laera, Vivian Lee, Takahide Matsutsuka, Roger Menday, and Aisha Naseer. 2013. “Applying Semantic Technologies to Public Sector: A Case Study in Fraud Detection.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-37996-3_23. D3

Kitsak, Maksim, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H. Eugene Stanley, and Hernán A. Makse. 2010. “Identification of Influential Spreaders in Complex Networks.” Nature Physics. https://doi.org/10.1038/nphys1746. D3

Koh, Robin, EW Edmund W Schuster, Indy Chackrabarti, and Attilio Bellman. 2003. “White Paper: Securing the Pharmaceutical Supply Chain. 2003.” AUTO-ID CENTER, Massachusetts Institute …. https://doi.org/10.1007/s10611-006-9009-5. D3

Mankiw, N Gregory, and Mark P. Taylor. 2011. Principles of Economics, Second Edition. Book. https://doi.org/10.1017/CBO9780511511455. D3

Neville, Jennifer, Özgür Şimşek, David Jensen, John Komoroske, Kelly Palmer, and Henry Goldberg. 2005. “Using Relational Knowledge Discovery to Prevent Securities Fraud.” In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/1081870.1081922. D3

Otte, Evelien, and Ronald Rousseau. 2002. “Social Network Analysis: A Powerful Strategy, Also for the Information Sciences.” Journal of Information Science. https://doi.org/10.1177/016555150202800601. D3

Silva, Carlos Vinícius Sarmento, and Célia Ghedini Ralha. 2010. “Utilização de Técnicas de Mineração de Dados Como Auxílio Na Detecção de Cartéis Em Licitações.” In XXX Congresso Da Sociedade Brasileira de Computação, 1–14. Belo Horizonte / Brazil. D3

———. 2011. “Agmi - An Agent-Mining Tool and Its Application to Brazilian Government Auditing.” In WEBIST 2011 - Proceedings of the 7th International Conference on Web Information Systems and Technologies. https://doi.org/10.5220/0003333905350538. D3

Silva, Luis Andre Dutra. 2016. “Utilização de Deep Learning Em Ações de Controle.” Revista TCU, 18–23. https://revista.tcu.gov.br/ojs/index.php/RTCU/article/view/1321. D3

Skillicorn, D. B., and L. Purda. 2012. “Detecting Fraud in Financial Reports.” In Proceedings - 2012 European Intelligence and Security Informatics Conference, EISIC 2012. https://doi.org/10.1109/EISIC.2012.8. D3

Virdhagriswaran, Sankar, and Gordon Dakin. 2006. “Camouflaged Fraud Detection in Domains with Complex Relationships.” In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/1150402.1150532. D3

Yang, Hu, Jar Der Luo, Ying Fan, and Li Zhu. 2020. “Using Weighted K-Means to Identify Chinese Leading Venture Capital Firms Incorporating with Centrality Measures.” Information Processing and Management. https://doi.org/10.1016/j.ipm.2019.102083. D3

Zareie, Ahmad, and Amir Sheikhahmadi. 2018. “A Hierarchical Approach for Influential Node Ranking in Complex Social Networks.” Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2017.10.018. D3

Žiberna, Aleš. 2020. “K-Means-Based Algorithm for Blockmodeling Linked Networks.” Social Networks. https://doi.org/10.1016/j.socnet.2019.10.006. D3
Publicado
30/06/2020
FIGUEIREDO, Bruno; NAKAMURA, Fabiola; FELIX, Gardenya; NAKAMURA, Eduardo. Usando análises sociais na identificação de nós relevantes em um cenário multi-redes: Operação Licitante Fantasma, um estudo de caso. In: WORKSHOP DE COMPUTAÇÃO APLICADA EM GOVERNO ELETRÔNICO (WCGE), 8. , 2020, Cuiabá. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 108-119. ISSN 2763-8723. DOI: https://doi.org/10.5753/wcge.2020.11262.

Artigos mais lidos do(s) mesmo(s) autor(es)