A Gated Review Attention Framework for Topics in Graph-Based Recommenders

  • Eduardo Ferreira da Silva UFBA
  • Joel Pires UFBA
  • Denis Robson Dantas UFBA
  • Mayki dos Santos Oliveira UFBA
  • Frederico Araujo Durão UFBA

Resumo


Recommender systems significantly reduce information overload by curating personalized content on digital platforms, thereby enhancing user experience. Traditional models often rely on sparse rating data, overlooking the rich semantic signals embedded in user reviews. To address this, we propose the Gated Review Attention Framework for Topics, a novel graph-based recommender system that integrates review-derived topic information with user-item interactions. Our approach leverages BERTopic to extract interpretable semantic topics from textual reviews and then embeds them into a graph attention network architecture. A gating mechanism dynamically regulates the influence of these topic representations relative to latent user and item embeddings, enabling adaptive feature fusion. We evaluate GRAFT on three benchmark datasets: Amazon Movies and TV, IMDb, and Rotten Tomatoes. Comparing it against classical and neural baselines, including SVD, DeepCoNN, and KANN. Experimental results demonstrate that GRAFT consistently achieves the lowest RMSE across all datasets, indicating superior rating prediction accuracy. Although traditional models perform better on ranking metrics, GRAFT achieves superior accuracy (lower RMSE), and our qualitative analysis demonstrates more substantial semantic alignment.
Palavras-chave: collaborative filtering, review-based recommendations, topic-extraction recommendation

Referências

Charu C. Aggarwal. 2016. Recommender Systems: The Textbook (1st ed.). Springer Publishing Company, Incorporated.

Pablo Castells and Dietmar Jannach. 2023. Recommender Systems: A Primer. arXiv:2302.02579 [cs.IR]

Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural Attentional Rating Regression with Review-level Explanations. In Proceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 1583–1592. DOI: 10.1145/3178876.3186070

Li Chen, Guanliang Chen, and Feng Wang. 2015. Recommender systems based on user reviews: the state of the art. User Modeling and User-Adapted Interaction 25, 2 (June 2015), 99–154. DOI: 10.1007/s11257-015-9155-5

Tao Chen, Premaratne Samaranayake, XiongYing Cen, Meng Qi, and Yi-Chen Lan. 2022. The Impact of Online Reviews on Consumers’ Purchasing Decisions: Evidence From an Eye-Tracking Study. Frontiers in Psychology Volume 13 - 2022 (2022). DOI: 10.3389/fpsyg.2022.865702

Zhiyong Cheng, Ying Ding, Xiangnan He, Lei Zhu, Xuemeng Song, and Mohan Kankanhalli. 2018. A3NCF: an adaptive aspect attention model for rating prediction. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (Stockholm, Sweden) (IJCAI’18). AAAI Press, 3748–3754.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078 [cs.CL] [link]

Shivangi Gheewala, Shuxiang Xu, Soonja Yeom, and Sumbal Maqsood. 2024. Exploiting deep transformer models in textual review based recommender systems. Expert Systems with Applications 235 (2024), 121120. DOI: 10.1016/j.eswa.2023.121120

Maarten Grootendorst. 2022. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv:2203.05794 [cs.CL] [link]

Xiangfu He, Qiyao Peng, Minglai Shao, and Yueheng Sun. 2024. Diffusion Review-Based Recommendation. In Knowledge Science, Engineering and Management, Cungeng Cao, Huajun Chen, Liang Zhao, Junaid Arshad, Taufiq Asyhari, and Yonghao Wang (Eds.). Springer Nature Singapore, Singapore, 255–269.

Nicolas Hug. 2020. Surprise: A Python library for recommender systems. Journal of Open Source Software 5, 52 (2020), 2174. DOI: 10.21105/joss.02174

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. 2010. Recommender Systems: An Introduction (1st ed.). Cambridge University Press, USA.

Simon Caton and Christian Haas. 2024. Fairness in Machine Learning: A Survey. ACM Comput. Surv. 56, 7, Article 166 (apr 2024), 38 pages. DOI: 10.1145/3616865,

Zheng Li, Di Jin, and Ke Yuan. 2023. Attentional factorization machine with review-based user–item interaction for recommendation. Scientific Reports 13, 1 (2023), 1–17. DOI: 10.1038/s41598-023-40633-4

Yun Liu and Jun Miyazaki. 2022. Knowledge-aware attentional neural network for review-based movie recommendation with explanations. Neural Comput. Appl. 35, 3 (sep 2022), 2717–2735. DOI: 10.1007/s00521-022-07689-1

Cataldo Musto, Marco de Gemmis, Giovanni Semeraro, and Pasquale Lops. 2017. A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. In Proceedings of the Eleventh ACM Conference on Recommender Systems (Como, Italy) (RecSys ’17). Association for Computing Machinery, New York, NY, USA, 321–325. DOI: 10.1145/3109859.3109905

Pedro Pires, Bruno Rizzi, and Tiago Almeida. 2024. Why Ignore Content? A Guideline for Intrinsic Evaluation of Item Embeddings for Collaborative Filtering. In Proceedings of the 30th Brazilian Symposium on Multimedia and the Web (Juiz de Fora/MG). SBC, Porto Alegre, RS, Brasil, 345–354. DOI: 10.5753/webmedia.2024.243199

Shaina Raza and Chen Ding. 2022. News recommender system: a review of recent progress, challenges, and opportunities. Artif. Intell. Rev. 55, 1 (Jan. 2022), 749–800. DOI: 10.1007/s10462-021-10043-x

Fu Shang, Jiatu Shi, Yadong Shi, and Shuwen Zhou. 2024. Enhancing E-Commerce Recommendation Systems with Deep Learning-based Sentiment Analysis of User Reviews. International Journal of Engineering and Management Research 14, 4 (aug 2024). DOI: 10.5281/zenodo.13221409

Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adriana Romero, and Yoshua Bengio. 2018. Graph attention networks. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings (2018), 1–12. DOI: 10.1007/978-3-031-01587-8_7 arXiv:1710.10903

Qiang Wang, Wen Zhang, Jian Li, Feng Mai, and Zhenzhong Ma. 2022. Effect of online review sentiment on product sales: The moderating role of review credibility perception. Computers in Human Behavior 133 (2022), 107272. DOI: 10.1016/j.chb.2022.107272

Shuang Yang and Xuesong Cai. 2023. An Enhanced Recommendation Model Based on Review Text Graph and Interaction Graph. IEEE Access 11 (2023), 88234–88244. DOI: 10.1109/ACCESS.2023.3305954

Eva Zangerle and Christine Bauer. 2022. Evaluating Recommender Systems: Survey and Framework. ACM Comput. Surv. 55, 8, Article 170 (Dec. 2022), 38 pages. DOI: 10.1145/3556536

André Zanon, Leonardo Rocha, and Marcelo Manzato. 2024. O Impacto de Estratégias de Embeddings de Grafos na Explicabilidade de Sistemas de Recomendação. In Proceedings of the 30th Brazilian Symposium on Multimedia and the Web (Juiz de Fora/MG). SBC, Porto Alegre, RS, Brasil, 231–239. DOI: 10.5753/webmedia.2024.241857

Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017. Joint Deep Modeling of Users and Items Using Reviews for Recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (Cambridge, United Kingdom) (WSDM ’17). Association for Computing Machinery, New York, NY, USA, 425–434. DOI: 10.1145/3018661.3018665

Yuanyuan Zhuang and Jaekyeong Kim. 2021. A BERT-Based Multi-Criteria Recommender System for Hotel Promotion Management. Sustainability 13, 14 (2021). DOI: 10.3390/su13148039
Publicado
10/11/2025
SILVA, Eduardo Ferreira da; PIRES, Joel; DANTAS, Denis Robson; OLIVEIRA, Mayki dos Santos; DURÃO, Frederico Araujo. A Gated Review Attention Framework for Topics in Graph-Based Recommenders. In: BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB (WEBMEDIA), 31. , 2025, Rio de Janeiro/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 19-27. DOI: https://doi.org/10.5753/webmedia.2025.15515.

Artigos mais lidos do(s) mesmo(s) autor(es)