Dermalyze: uma aplicação para auxílio à triagem de lesões de pele baseado em aprendizado profundo
Resumo
According to the Brazilian Institute of Cancer, skin cancer is the most common displasya in the country. To mitigate this situation and ensure quality of life for those affected by the disease, early diagnosis is fundamental. When treated early, 5-year survival rates can exceed 96%. In this context, we developed a skin lesion screening application to assist in the identification of skin cancer. This software, designed for use by healthcare professionals, leverages artificial intelligence to assess the cancerous potential of a lesion based on a clinical image captured by a mobile device. The developed model achieved a balanced accuracy of 80%, and the application in which it was embedded was tested in a clinical setting with a total of 82 users. Based on the predictions made during the case study, the model was able to correctly identify the severity of the lesions in approximately 70% of the cases. Additionally, about 92% of users reported the model to be useful during the screening process, describing their experience primarily with words such as comfort and safety.
Referências
Olusoji Akinrinade and Chunglin Du. 2025. Skin cancer detection using deep machine learning techniques. Intelligence-Based Medicine 11 (2025), 100191. DOI: 10.1016/j.ibmed.2024.100191
AMB. 2023. Demografia Médica no Brasil 2023. Associação Médica Brasileira (AMB). Disponível em: [link]. Último acesso em: 05 de Julho 2025.
Pedro B. C. Castro, Breno Krohling, Andre G. C. Pacheco, and Renato A. Krohling. 2020. An app to detect melanoma using deep learning: An approach to handle imbalanced data based on evolutionary algorithms. In 2020 International Joint Conference on Neural Networks (IJCNN). 1–6. DOI: 10.1109/IJCNN48605.2020.9207552
Xavier Chadwick, Lois J. Loescher, Monika Janda, and H. Peter Soyer. 2014. Mobile Medical Applications for Melanoma Risk Assessment: False Assurance or Valuable Tool?. In 2014 47th Hawaii International Conference on System Sciences. 2675–2684. DOI: 10.1109/HICSS.2014.337
Sociedade Brasileira de Dermatologia. 2025. Câncer da Pele. SBD. Disponível em: [link]. Último acesso em: 19 de Julho 2025.
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255. DOI: 10.1109/CVPR.2009.5206848
DermNet. 2025. The world’s leading free dermatology website. [link] Acesso em: 19 jul. 2025.
Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and Sebastian Thrun. 2017. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 7639 (2017), 115.
Google Firebase 2025. Firebase Authentication. Google Firebase. Retrieved July 09, 2025 from [link]
Skin Cancer Foundation. 2025. Skin Cancer Facts&Statistics. Skin Cancer Foundation. Disponível em: [link]. Último acesso em: 05 de Julho 2025.
Google. 2025. Guide to app architecture. Google for Developers. Disponível em: [link]. Último acesso em: 10 de Julho 2025.
Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash Koochek, and Omar Badri. 2021. Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset. arXiv:2104.09957 [cs.CV] [link]
Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobile-Nets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv:1704.04861 [cs.CV] [link]
INCA. 2023. Incidência do câncer no Brasil. Instituto Nacional do Câncer (INCA). Disponível em: [link]. Último acesso em: 16 de Junho 2024.
National Cancer Institute. 2025. Cancer Stat Facts: Melanoma of the Skin. National Cancer Institute. Disponível em: [link]. Último acesso em: 09 de Julho 2025.
Muhammad Attique Khan, Khan Muhammad, Muhammad Sharif, Tallha Akram, and Victor Hugo C. de Albuquerque. 2021. Multi-Class Skin Lesion Detection and Classification via Teledermatology. IEEE Journal of Biomedical and Health Informatics 25, 12 (2021), 4267–4275. DOI: 10.1109/JBHI.2021.3067789
Andre Pacheco, Clayton Vicente, Eduarda Magesk, Gabriel Lucas, Guilherme Caldana, and Patricia Frasson. 2023. SADE: Software de Análise Dermatológica - Um sistema de coleta, gerenciamento e triagem de lesões de pele. In Anais Estendidos do XXIX Simpósio Brasileiro de Sistemas Multimídia eWeb (Ribeirão Preto/SP). SBC, Porto Alegre, RS, Brasil, 111–114. DOI: 10.5753/webmedia_estendido.2023.235905
Andre GC Pacheco, Abder-Rahman Ali, and Thomas Trappenberg. 2019. Skin cancer detection based on deep learning and entropy to detect outlier samples. In Medical Image Computing and Computer Assisted Intervention (MICCAI) at Skin Lesion Analysis Towards Melanoma Detection (ISIC) challenge. 1–6.
Andre GC Pacheco and Renato A Krohling. 2019. Recent advances in deep learning applied to skin cancer detection. In Neural Information Processing Systems at Retrospectives workshop. 1–8.
Andre GC Pacheco and Renato A Krohling. 2021. An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification. IEEE journal of biomedical and health informatics 25, 9 (2021), 3554–3563.
Andre GC Pacheco, Gustavo R Lima, Amanda S Salomão, Breno Krohling, Igor P Biral, Gabriel G de Angelo, Fábio CR Alves Jr, José GM Esgario, Alana C Simora, Pedro BC Castro, et al. 2020. PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones. Data in Brief 32 (2020), 1–10.
Amdad Hossain Roky, Mohammed Murshedul Islam, Abu Mohammed Fuad Ahasan, Md Saqline Mostaq, Md Zihad Mahmud, Mohammad Nurul Amin, and Md Ashiq Mahmud. 2025. Overview of skin cancer types and prevalence rates across continents. Cancer Pathogenesis and Therapy 3, 2 (2025), 89–100. DOI: 10.1016/j.cpt.2024.08.002
Luís Rosado, Maria João M. Vasconcelos, Fernando Correia, and Nuno Costa. 2015. A novel framework for supervised mobile assessment and risk triage of skin lesions. In 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth). 266–267. DOI: 10.4108/icst.pervasivehealth.2015.259254
Marwen Sakl, Chaker Essid, Bassem Ben Salah, and Hedi Sakli. 2023. DL Methods for Skin Lesions Automated Diagnosis In Smartphone Images. In 2023 International Wireless Communications and Mobile Computing (IWCMC). 1142–1147. DOI: 10.1109/IWCMC58020.2023.10183254
Tobias Sangers, Suzan Reeder, Sophie van der Vet, Sharan Jhingoer, Antien Mooyaart, Daniel M. Siegel, Tamar Nijsten, and Marlies Wakkee. 2022. Validation of a Market-Approved Artificial Intelligence Mobile Health App for Skin Cancer Screening: A Prospective Multicenter Diagnostic Accuracy Study. Dermatology 238, 4 (Feb. 2022), 649–656. DOI: 10.1159/000520474_eprint: [link].
American Cancer Society. 2025. Key Statistics for Melanoma Skin Cancer. American Cancer Society. Disponível em: [link]. Último acesso em: 09 de Julho 2025.
Luis A. Souza, André G. C. Pacheco, Gabriel G. de Angelo, Thiago Oliveira-Santos, Christoph Palm, and João P. Papa. 2024. LiwTERM: A Lightweight Transformer-Based Model for Dermatological Multimodal Lesion Detection. In 2024 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). 1–6. DOI: 10.1109/SIBGRAPI62404.2024.10716324
Statcounter. 2025. Mobile Operating System Market Share in Brazil - June 2025. Statcounter GlobalStats. Disponível em: [link]. Último acesso em: 09 de Julho 2025.
Yikai Yang, EricW.T. Ngai, and LeiWang. 2024. Resistance to artificial intelligence in health care: Literature review, conceptual framework, and research agenda. Information & Management 61, 4 (2024), 103961. DOI: 10.1016/j.im.2024.103961
