Converting Natural Language to Query Languages Using Large Language Models: A Systematic Literature Review

  • Rayfran Rocha Lima Sidia Institute of Technology
  • Kamila Cardoso Vasconcelos Sidia Institute of Technology
  • Eloisa Mendonça Gadelha Sidia Institute of Technology

Resumo


The task of converting natural language commands into query languages (NL-to-QL) has gained attention due to its potential to improve data accessibility for non-technical users. Although several studies have explored rule-based and sequence-to-sequence models, there is still a lack of a literature review that presents the impact of using large language models (LLMs) on this task. As an output of a systematic literature review, this paper examines how recent studies have utilized LLMs by applying fine-tuning or prompt engineering techniques to address this task. Presenting a compilation of methods, architectures, and techniques, as well as evaluation metrics, datasets, and benchmarks applied, including the available competitions and educational platforms, it provides a comprehensive overview of NL-to-QL conversion, mapping current advancements, future research directions, and remaining challenges, including issues with schema generalization, query interpretability, and hallucination mitigation.
Palavras-chave: Txt2SQL, NL-to-QL, NL Query to Query Language

Referências

Willem Aerts, George Fletcher, and Daphne Miedema. 2024. A feasibility study on automated sql exercise generation with chatgpt-3.5. In Proceedings of the 3rd International Workshop on Data Systems Education: Bridging education practice with education research. 13–19.

Ankit Agrahari, Puneet Kumar Ojha, Abhishek Gautam, and Parikshit Singh. 2024. SFT For Improved Text-to-SQL Translation. (2024).

Aseem Arora, Shabbirhussain Bhaisaheb, Harshit Nigam, Manasi Patwardhan, Lovekesh Vig, and Gautam Shroff. 2023. Adapt and decompose: Efficient generalization of text-to-sql via domain adapted least-to-most prompting. arXiv preprint arXiv:2308.02582 (2023).

Atlassian Marketplace. 2025. JQL AI — Natural Language to JQL Query Assistant. [link]. Accessed: 2025-07-17.

Ayush Attawar, Shivam Vora, Parth Narechania, Vinaya Sawant, and Heli Vora. 2023. NLSQL: Generating and Executing SQL Queries via Natural Language Using Large Language Models. In 2023 International Conference on Advanced Computing Technologies and Applications (ICACTA). IEEE, 1–6.

Muhammad Shahzaib Baig, Azhar Imran, Aman Ullah Yasin, Abdul Haleem Butt, and Muhammad Imran Khan. 2022. Natural language to sql queries: A review. International Journal of Innovations in Science Technology 4 (2022), 147–162.

Gourav Bathla, Pardeep Singh, and Rahul K Singh. 2021. AI-based Question Answering system for NoSQL standard query. (2021).

Casper Solheim Bojer and Jens Peder Meldgaard. 2021. Kaggle forecasting competitions: An overlooked learning opportunity. International Journal of Forecasting 37, 2 (2021), 587–603.

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao. 2021. Sadga: Structure-aware dual graph aggregation network for text-to-sql. Advances in Neural Information Processing Systems 34 (2021), 7664–7676.

Vanessa Câmara, Rayol Mendonca-Neto, André Silva, and Luiz Cordovil-Jr. 2023. DBVinci–towards the usage of GPT engine for processing SQL Queries. In Proceedings of the 29th Brazilian Symposium on Multimedia and the Web. 91–95.

Shuaichen Chang and Eric Fosler-Lussier. 2023. Selective demonstrations for cross-domain text-to-SQL. arXiv preprint arXiv:2310.06302 (2023).

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin. 2021. Ryansql: Recursively applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. Computational Linguistics 47, 2 (2021), 309–332.

Edgar F Codd. 1970. A relational model of data for large shared data banks. Commun. ACM 13, 6 (1970), 377–387.

Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis in software engineering. In 2011 international symposium on empirical software engineering and measurement. ÌEEE, NJ, US, 275–284.

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Recent advances in text-to-SQL: a survey of what we have and what we expect. arXiv preprint arXiv:2208.10099 (2022).

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and Matthew Richardson. 2020. Structure-grounded pretraining for text-to-SQL. arXiv preprint arXiv:2010.12773 (2020).

Anushka Deshpande, Dhruv Kothari, Akash Salvi, Prajakta Mane, and Vaishali Kolhe. 2022. Querylizer: An Interactive Platform for Database Design and Text to SQL Conversion. In 2022 International Conference for Advancement in Technology (ICONAT). IEEE, 1–6.

DocsBot AI. 2024. JQL Query Generator — Prompt for ChatGPT, Claude, Gemini. [link]. Accessed: 2025-07-17.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. 2008. Selecting empirical methods for software engineering research. Guide to advanced empirical software engineering (2008), 285–311.

Yuankai Fan, Tonghui Ren, Zhenying He, X Sean Wang, Ye Zhang, and Xingang Li. 2023. Gensql: A generative natural language interface to database systems. In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 3603–3606.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R Woodward, John Drake, and Qiaofu Zhang. 2021. Natural SQL: Making SQL easier to infer from natural language specifications. arXiv preprint arXiv:2109.05153 (2021).

Dawei Gao, HaibinWang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint arXiv:2308.15363 (2023).

Youdi Gong, Guangzhen Liu, Yunzhi Xue, Rui Li, and Lingzhong Meng. 2023. A survey on dataset quality in machine learning. Information and Software Technology 162 (2023), 107268. DOI: 10.1016/j.infsof.2023.107268

Chunxi Guo, Zhiliang Tian, Jintao Tang, Shasha Li, Zhihua Wen, Kaixuan Wang, and Ting Wang. 2023. Retrieval-augmented gpt-3.5-based text-to-sql framework with sample-aware prompting and dynamic revision chain. In International Conference on Neural Information Processing. Springer, 341–356.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng Wang, Zhihua Wen, Kang Yang, and Ting Wang. 2023. Prompting GPT-3.5 for Text-to-SQL with Desemanticization and Skeleton Retrieval. In Pacific Rim International Conference on Artificial Intelligence. Springer, 262–274.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang. 2019. Towards complex text-to-sql in cross-domain database with intermediate representation. arXiv preprint arXiv:1905.08205 (2019).

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen, Shi Han, et al. 2024. Text2analysis: A benchmark of table question answering with advanced data analysis and unclear queries. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 18206–18215.

Charles T Hemphill, John J Godfrey, and George R Doddington. 1990. The ATIS spoken language systems pilot corpus. In Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27, 1990.

Hsiu-Fang Hsieh and Sarah E Shannon. 2005. Three approaches to qualitative content analysis. Qualitative health research 15, 9 (2005), 1277–1288.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. 2022. Lora: Low-rank adaptation of large language models. ICLR 1, 2 (2022), 3.

Zhentao Hu, Wei Hou, and Xianxing Liu. 2024. Deep learning for named entity recognition: a survey. Neural Computing and Applications 36, 16 (2024), 8995–9022.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and Minjoon Seo. 2019. A comprehensive exploration on wikisql with table-aware word contextualization. arXiv preprint arXiv:1902.01069 (2019).

Dhruvisha Jaiswal. 2025. Building a Natural Language to MongoDB Query AI Agent. [link]. Accessed: 2025-07-17.

Salomon Kabongo, Jennifer D’Souza, and Sören Auer. 2024. Exploring the latest LLMs for leaderboard extraction. arXiv preprint arXiv:2406.04383 (2024).

Ali Buğra Kanburoğlu and F Boray Tek. 2023. TUR2SQL: A cross-domain Turkish dataset for Text-to-SQL. In 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE, 206–211.

Ali Buğra Kanburoğlu and Faik Boray Tek. 2024. Text-to-SQL: A methodical review of challenges and models. Turkish Journal of Electrical Engineering and Computer Sciences 32, 3 (2024), 403–419.

George Katsogiannis-Meimarakis and Georgia Koutrika. 2021. A deep dive into deep learning approaches for text-to-sql systems. In Proceedings of the 2021 International Conference on Management of Data. 2846–2851.

Imed Keraghel, Stanislas Morbieu, and Mohamed Nadif. 2024. A survey on recent advances in named entity recognition. arXiv preprint arXiv:2401.10825 (2024).

Barbara Kitchenham, Rialette Pretorius, David Budgen, O Pearl Brereton, Mark Turner, Mahmood Niazi, and Stephen Linkman. 2010. Systematic literature reviews in software engineering–a tertiary study. Information and software technology 52, 8 (2010), 792–805.

Surjeet Kumar, Md Shamsher Alam, Zeeshan Khursheed, Shadan Bashar, and Neha Kalam. 2024. Enhancing Relational Database Interaction through Open AI and Stanford Core NLP-Based on Natural Language Interface. In 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST). IEEE, 589–602.

J. R. Landis and G. G. Koch. 1977. The Measurement of Observer Agreement for Categorical Data. Biometrics 33, 1 (1977), 159–174. DOI: 10.2307/2529310

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. 2024. Spider 2.0: Evaluating language models on real-world enterprise text-to-sql workflows. arXiv preprint arXiv:2411.07763 (2024).

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a database interface? a big bench for large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems 36 (2024).

Jinqing Lian, Xinyi Liu, Yingxia Shao, Yang Dong, MingWang, ZhangWei, Tianqi Wan, Ming Dong, and Hailin Yan. 2024. ChatBI: Towards natural language to complex business intelligence SQL. arXiv preprint arXiv:2405.00527 (2024).

Jinfeng Lin, Yalin Liu, Jin Guo, Jane Cleland-Huang, William Goss, Wenchuang Liu, Sugandha Lohar, Natawut Monaikul, and Alexander Rasin. 2017. Tiqi: A natural language interface for querying software project data. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 973–977.

Aixin Liu, Bei Feng, Bing Xue, BingxuanWang, BochaoWu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437 (2024).

Pan Liu, Yanming Guo, FengleiWang, and Guohui Li. 2022. Chinese named entity recognition: The state of the art. Neurocomputing 473 (2022), 37–53.

Shicheng Liu, Jialiang Xu, Wesley Tjangnaka, Sina J Semnani, Chen Jie Yu, and Monica S Lam. 2023. SUQL: Conversational Search over Structured and Unstructured Data with Large Language Models. arXiv preprint arXiv:2311.09818 (2023).

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang, and Zheng Chen. 2020. Hybrid ranking network for text-to-sql. arXiv preprint arXiv:2008.04759 (2020).

Yuchi Ma, Zhou Zhang, Hsiuhan Lexie Yang, and Zhengwei Yang. 2021. An adaptive adversarial domain adaptation approach for corn yield prediction. Computers and Electronics in Agriculture 187 (2021), 106314.

Alaa Marshan, Anwar Nais Almutairi, Athina Ioannou, David Bell, Asmat Monaghan, and Mahir Arzoky. 2024. MedT5SQL: a transformers-based large language model for text-to-SQL conversion in the healthcare domain. Frontiers in Big Data 7 (2024), 1371680.

Y Mellah, A Rhouati, EH Ettifouri, T Bouchentouf, and MG Belkasmi. 2021. SQL generation from natural language: A sequence-to-sequence model powered by the transformers architecture and association rules. Journal of Computer Science 17, 5 (2021), 480–489.

MongoDB, Inc. 2025. Query with Natural Language in MongoDB Compass. [link]. Accessed: 2025-07-17.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and Dragomir Radev. 2023. Enhancing text-to-SQL capabilities of large language models: A study on prompt design strategies. In Findings of the Association for Computational Linguistics: EMNLP 2023. 14935–14956.

Eduardo R Nascimento, Grettel M Garcıa, Lucas Feijó,Wendy Z Victorio, Yenier T Izquierdo, Aiko R de Oliveira, Gustavo MC Coelho, Melissa Lemos, Robinson LS Garcia, Luiz AP Paes Leme, et al. 2024. Text-to-SQL Meets the Real-World. In 26th Int. Conf. on Enterprise Info. Sys.

Eduardo R Nascimento, Yenier T Izquierdo, GrettelMGarcıa, Gustavo MC Coelho, Lucas Feijó, Melissa Lemos, Luiz AP Paes Leme, and Marco A Casanova. 2024. My Database User Is a Large Language Model. In 26th Int. Conf. on Enterprise Info. Sys.

Pin Ni, Ramin Okhrati, Steven Guan, and Victor Chang. 2024. Knowledge graph and deep learning-based text-to-GraphQL model for intelligent medical consultation chatbot. Information Systems Frontiers 26, 1 (2024), 137–156.

Arkil Patel, Satwik Bhattamishra, Siva Reddy, and Dzmitry Bahdanau. 2023. Magnifico: Evaluating the in-context learning ability of large language models to generalize to novel interpretations. arXiv preprint arXiv:2310.11634 (2023).

Yuriy Perezhohin. 2023. A Neural Rule-Based Model for Database Exploration: The Combination of Rule-Based Methods With Pre-Trained Embedding Models for Text to SQL Task. Master’s thesis. Universidade NOVA de Lisboa (Portugal).

Putsadee Pornphol and Suphamit Chittayasothorn. 2024. Using LLM Artificial Intelligence Systems as Complex SQL Programming Assistants. In 2024 12th International Conference on Information and Education Technology (ICIET). IEEE, 477–481.

Mohammadreza Pourreza and Davood Rafiei. 2024. Din-sql: Decomposed incontext learning of text-to-sql with self-correction. Advances in Neural Information Processing Systems 36 (2024).

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao, Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql parsing: Concepts, methods, and future directions. arXiv preprint arXiv:2208.13629 (2022).

Federico Ranaldi, Elena Sofia Ruzzetti, Leonardo Ranaldi, Davide Venditti, Cristina Giannone, Andrea Favalli, Raniero Romagnoli, Fabio Massimo Zanzotto, et al. 2023. Prompting LLMs in Italian Language for Text-to-SQL Translation.. In CLiC-it.

Marlesson Santana. 2019. As melhores plataformas de Competição para Cientistas de Dados. [link]

Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita Sarawagi. 2018. Generalizing across domains via cross-gradient training. arXiv preprint arXiv:1804.10745 (2018).

Ankita Sharma, Xuanmao Li, Hong Guan, Guoxin Sun, Liang Zhang, Lanjun Wang, Kesheng Wu, Lei Cao, Erkang Zhu, Alexander Sim, et al. 2023. Automatic data transformation using large language model-an experimental study on building energy data. In 2023 IEEE International Conference on Big Data (BigData). IEEE, 1824–1834.

Hao Shen, Ran Shen, Gang Sun, Yiling Li, Yifan Wang, and Pengcheng Zhang. 2023. Sequential Feature Augmentation for Robust Text-to-SQL. In 2023 International Conference on Algorithms, Computing and Data Processing (ACDP). IEEE, 217–223.

Peng Shi, Rui Zhang, He Bai, and Jimmy Lin. 2022. Xricl: Cross-lingual retrievalaugmented in-context learning for cross-lingual text-to-sql semantic parsing. arXiv preprint arXiv:2210.13693 (2022).

Yewei Song, Saad Ezzini, Xunzhu Tang, Cedric Lothritz, Jacques Klein, Tegawendé Bissyandé, Andrey Boytsov, Ulrick Ble, and Anne Goujon. 2024. Enhancing Text-to-SQL Translation for Financial System Design. In Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice. 252–262.

Yuanfeng Song, Raymond Chi-Wing Wong, and Xuefang Zhao. 2024. Speech-to-SQL: toward speech-driven SQL query generation from natural language question. The VLDB Journal (2024), 1–23.

Stack Overflow. 2024. 2024 Stack Overflow Developer Survey. [link]. Accessed: 2025-07-17.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Kenton Lee. 2020. Exploring unexplored generalization challenges for cross-database semantic parsing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 8372–8388.

Ruoxi Sun, Sercan Ö Arik, Rajarishi Sinha, Hootan Nakhost, Hanjun Dai, Pengcheng Yin, and Tomas Pfister. 2023. Sqlprompt: In-context text-to-sql with minimal labeled data. arXiv preprint arXiv:2311.02883 (2023).

Shuo Sun, Yuchen Zhang, Jiahuan Yan, Yuze Gao, Donovan Ong, Bin Chen, and Jian Su. 2023. Battle of the Large Language Models: Dolly vs LLaMA vs Vicuna vs Guanaco vs Bard vs ChatGPT–A Text-to-SQL Parsing Comparison. arXiv preprint arXiv:2310.10190 (2023).

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. 2023. Exploring chain-of-thought style prompting for text-to-sql. arXiv preprint arXiv:2305.14215 (2023).

Toni Taipalus. 2024. Database management system performance comparisons: A systematic literature review. Journal of Systems and Software 208 (2024), 111872. DOI: 10.1016/j.jss.2023.111872

Zhao Tan, Xiping Liu, Qing Shu, Xi Li, Changxuan Wan, Dexi Liu, Qizhi Wan, and Guoqiong Liao. 2024. Enhancing Text-to-SQL Capabilities of Large Language Models through Tailored Promptings. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). 6091–6109.

Jingwei Tang, Guodao Sun, Jiahui Chen, Gefei Zhang, Baofeng Chang, Haixia Wang, and Ronghua Liang. 2024. MAVIDSQL: A Model-Agnostic Visualization for Interpretation and Diagnosis of Text-to-SQL Tasks. IEEE Transactions on Cognitive and Developmental Systems (2024).

Alessandro Tola. 2024. Towards user-friendly nosql: A synthetic dataset approach and large language models for natural language query translation. Ph.D. Dissertation. Politecnico di Torino.

Immanuel Trummer. 2023. Demonstrating gpt-db: Generating query-specific and customizable code for sql processing with gpt-4. Proceedings of the VLDB Endowment 16, 12 (2023), 4098–4101.

Shao V Tsiu, Mfanelo Ngobeni, Lesley Mathabela, and Bonginkosi Thango. 2025. Applications and competitive advantages of data mining and business intelligence in SMEs performance: A systematic review. Businesses 5, 2 (2025), 22.

Haijing Tu. 2024. Cassandra vs. mongodb: A systematic review of two nosql data stores in their industry uses. In 2024 IEEE 7th International Conference on Big Data and Artificial Intelligence (BDAI). IEEE, 81–86.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 7567–7578.

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders Wesslén. 2012. Experimentation in Software Engineering. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-29044-2

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. 2018. Sql-to-text generation with graph-to-sequence model. arXiv preprint arXiv:1809.05255 (2018).

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating structured queries from natural language without reinforcement learning. arXiv preprint arXiv:1711.04436 (2017).

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018. Typesql: Knowledge-based type-aware neural text-to-sql generation. arXiv preprint arXiv:1804.09769 (2018).

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, DongxuWang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang Lou, and Jinshu Lin. 2024. FinSQL: Model-Agnostic LLMs-based Text-to-SQL Framework for Financial Analysis. arXiv preprint arXiv:2401.10506 (2024).

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. 2023. ACT-SQL: In-Context Learning for Text-to-SQL with Automatically-Generated Chain-of-Thought. arXiv preprint arXiv:2310.17342 (2023).

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and Sida Wang. 2023. Coder reviewer reranking for code generation. In International Conference on Machine Learning. PMLR, 41832–41846.

Weixu Zhang, YifeiWang, Yuanfeng Song, Victor JunqiuWei, Yuxing Tian, Yiyan Qi, Jonathan H Chan, Raymond Chi-WingWong, and Haiqin Yang. 2024. Natural language interfaces for tabular data querying and visualization: A survey. IEEE Transactions on Knowledge and Data Engineering (2024).

Xiaoyu Zhang, Fengjing Yin, Guojie Ma, Bin Ge, andWeidong Xiao. 2020. M-SQL: Multi-task representation learning for single-table Text2sql generation. IEEE Access 8 (2020), 43156–43167.

Yusen Zhang, Jun Wang, Zhiguo Wang, and Rui Zhang. 2023. XSemPLR: Crosslingual semantic parsing in multiple natural languages and meaning representations. arXiv preprint arXiv:2306.04085 (2023).
Publicado
10/11/2025
LIMA, Rayfran Rocha; VASCONCELOS, Kamila Cardoso; GADELHA, Eloisa Mendonça. Converting Natural Language to Query Languages Using Large Language Models: A Systematic Literature Review. In: BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB (WEBMEDIA), 31. , 2025, Rio de Janeiro/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 598-608. DOI: https://doi.org/10.5753/webmedia.2025.15123.