Estratégias de Redução de Custos em Nuvem sob a Perspectiva do Usuário: Um Mapeamento Sistemático

  • Elisa de Fátima Andrade Soares UFPE
  • David Junio Mota Cavalcanti UFPE
  • Ioram Schechtman Sette UFPE
  • Carlos André Guimarães Ferraz UFPE

Resumo


Cloud-based systems operate under a pay-per-use pricing model, which brings challenges related to budget cost management. Cloud financial management, anchored in FinOps principles, balances performance with budget control. Existing cloud cost management solutions have explored different approaches, such as resource requirement estimation, historical data analysis, and automated scaling decisions, which are already widely adopted. However, existing studies still lack a comprehensive view of cost optimization strategies, which vary between user and provider perspectives, and there is no way to classify or choose the most appropriate approach for every scenario. In this context, this paper proposes a systematic mapping study covering cloud cost reduction strategies from the user’s perspective. In particular, a complete methodology approach was defined by formulating detailed research questions, using carefully crafted search strings in scientific databases, and establishing organized by and structured by (processing, storage, network), strategy, type strategy, service type, cloud type and resource. Finally, emerging trends, research gaps, and practical implications for industry and academia are discussed.

Palavras-chave: cloud cost optimization, cloud computing, finOps, systematic mapping study

Referências

Ehab Nabiel Al-Khanak, Sai Peck Lee, Saif Ur Rehman Khan, Navid Behboodian, Osamah Ibrahim Khalaf, Alexander Verbraeck, and Hans van Lint. 2021. A heuristics-based cost model for scientific workflow scheduling in cloud. 67, 3 (2021), 3265–3282. DOI: 10.32604/cmc.2021.015409

Mana Saleh Al Reshan, Darakhshan Syed, Noman Islam, Asadullah Shaikh, Mohammed Hamdi, Mohamed A. Elmagzoub, Ghulam Muhammad, and Kashif Hussain Talpur. 2023. A Fast Converging and Globally Optimized Approach for Load Balancing in Cloud Computing. IEEE Access 11, February (2023), 11390–11404. DOI: 10.1109/ACCESS.2023.3241279

Batool Alkaddah and Anjali Agarwal. 2022. Evaluating Amazon EC2 Spot Price Prediction Models Using Regression Error Characteristic Curve. 2022 7th International Conference on Fog and Mobile Edge Computing, FMEC 2022 (2022), 1–8. DOI: 10.1109/FMEC57183.2022.10062720

Ehab Nabiel Alkhanak and Sai Peck Lee. 2018. A hyper-heuristic cost optimisation approach for Scientific Workflow Scheduling in cloud computing. Future Gener. Comput. Syst. 86 (2018), 480–506. DOI: 10.1016/j.future.2018.03.055

Mohammed F. Alomari, Moamin A. Mahmoud, Niayesh Gharaei, Samer Mohammed Rasool, and Riyam A. Hasan. 2024. Optimizing Cloud Storage Costs: Introducing the Pre-Evaluation-Based Cost Optimization (PECSCO) Mechanism. ICSINTESA 2024 - 2024 4th International Conference of Science and Information Technology in Smart Administration: The Collaboration of Smart Technology and Good Governance for Sustainable Development Goals 1, 1 (2024), 564–569. DOI: 10.1109/ICSINTESA62455.2024.10748165

Fahad Alshammari and Xiaohui Li. 2025. AI-driven cost optimization in cloud computing: A systematic review and future research directions. J. Cloud Comput. 14, 1 (2025), 1–22.

Pradeep Ambati, Noman Bashir, David Irwin, Mohammad Hajiesmaili, and Prashant Shenoy. 2020. Hedge Your Bets: Optimizing Long-term Cloud Costs by Mixing VM Purchasing Options. Proceedings - 2020 IEEE International Conference on Cloud Engineering, IC2E 2020 (2020), 105–115. DOI: 10.1109/IC2E48712.2020. 00018

Mohammed Amoon, Nirmeen El-Bahnasawy, and Mai ElKazaz. 2019. An efficient cost-based algorithm for scheduling workflow tasks in cloud computing systems. 31, 5 (2019), 1353–1363. DOI: 10.1007/s00521-018-3610-2

David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeffrey D. Camm, and James J. Cochran. 2020. Statistics for Business and Economics (13 ed.). Cengage Learning, Boston, MA.

Jose Pergentino Araujo Neto, Donald M. Pianto, and Celia G. Ralha. 2018. An agent-based fog computing architecture for resilience on amazon EC2 spot instances. Proceedings - 2018 Brazilian Conference on Intelligent Systems, BRACIS 2018 Cic (2018), 360–365. DOI: 10.1109/BRACIS.2018.00069

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. 2009. Above the Clouds: A Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28. EECS Department, University of California, Berkeley, Berkeley, CA, USA. 1–25 pages. [link]

Sugunakumar Arunan, Gayashan Amarasinghe, and Indika Perera. 2023. Costoptimized scheduling for Microservices in Kubernetes. Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom (2023), 131–138. DOI: 10.1109/CloudCom59040.2023.00032

S. Sajitha Banu and S. R. Balasundaram. 2021. Cost Optimization for Dynamic Content Delivery in Cloud-Based Content Delivery Network. 14, 4 (2021), 18–32. DOI: 10.4018/jitr.2021100102

Sarah B. Basahel and Mohammad Yamin. 2022. A Novel Genetic Algorithm for Efficient Task Scheduling in Cloud Environment. Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development, INDIACom 2022 (2022), 30–34. DOI: 10.23919/INDIACom54597.2022.9763230

Manoj Bhoyar. 2025. AI-driven cloud optimization: Leveraging machine learning for dynamic resource allocation. World J. Adv. Eng. Technol. Sci. 15, 2 (2025), 877–884.

Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros, Yogesh Simmhan, Blesson Varghese, Erol Gelenbe, Bahman Javadi, Luis Miguel Vaquero, Marco A. S. Netto, Adel Nadjaran Toosi, Maria Alejandra Rodriguez, Ignacio M. Llorente, Sabrina De Capitani di Vimercati, Pierangela Samarati, Dejan Milojicic, Carlos Varela, Rami Bahsoon, Marcos Dias de Assuncao, Omer Rana,Wanlei Zhou, Hai Jin,Wolfgang Gentzsch, Albert Y. Zomaya, and Haiying Shen. 2019. A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade. ACM Comput. Surv. 51, 5 (2019), 105:1–105:38. DOI: 10.1145/3241737

Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. 2013. Mastering Cloud Computing: Foundations and Applications Programming. McGraw Hill Education, New York, NY, USA.

Simon Caton, Matt Baughman, Christian Haas, Ryan Chard, Ian Foster, and Kyle Chard. 2022. Assessing the Current State of AWS Spot Market Forecastability. Proceedings of SuperCompCloud 2022: 6th International Workshop on Interoperability of Supercomputing and Cloud Technologies, Held in conjunction with SC 2022: The International Conference for High Performance Computing, Networking, Storage and Analysis 1, 1 (2022), 8–15. DOI: 10.1109/SuperCompCloud56703.2022.00007

D. Chaudhary and Bijendra Kumar. 2019. Cost optimized Hybrid Genetic-Gravitational Search Algorithm for load scheduling in Cloud Computing. 83 (2019), 105627. DOI: 10.1016/j.asoc.2019.105627

Junjie Chen and Hongjun Li. 2020. A two-phase cloud resource provisioning algorithm for cost optimization. 2020 (2020). DOI: 10.1155/2020/1310237

Weihong Chen andWeichu Xiao. 2019. Cost-Efficient task scheduling for parallel applications on heterogeneous cloud environment. Proceedings - 21st IEEE International Conference on High Performance Computing and Communications, 17th IEEE International Conference on Smart City and 5th IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2019 (2019), 1651–1657. DOI: 10.1109/HPCC/SmartCity/DSS.2019.00226

Mohan Baruwal Chhetri, Abdur Rahim Mohammad Forkan, Quoc Bao Vo, Surya Nepal, and Ryszard Kowalczyk. 2019. Towards risk-aware cost-optimal resource allocation for cloud applications. Proceedings - 2019 IEEE International Conference on Services Computing, SCC 2019 - Part of the 2019 IEEEWorld Congress on Services (2019), 210–214. DOI: 10.1109/SCC.2019.00043

Yu Ting Chou, Shih Jui Liu, Tzu Chuan Wu, Chia Lin Wu, Chun We Tsai, and Ming Chao Chiang. 2018. An Effective Algorithm for Cloud Workflow Scheduling. Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 (2018), 3603–3608. DOI: 10.1109/SMC.2018.00609

Louis Cohen, Lawrence Manion, and Keith Morrison. 2018. Research Methods in Education (8 ed.). Routledge, New York, NY. DOI: 10.4324/9781315456539

John W. Creswell and J. David Creswell. 2017. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage Publications, Thousand Oaks, CA.

Leandro Costa Da Silva, Robson De Medeiros, and Nelson Rosa. 2023. COSTA: A cost-driven solution for migrating applications in multi-cloud environments. Proceedings of the ACM Symposium on Applied Computing (2023), 57–63. DOI: 10.1145/3555776.3577718

Mustafa Daraghmeh, Anjali Agarwal, and Yaser Jararweh. 2023. Regression-Based Approach for Proactive Predictive Modeling of Efficient Cloud Cost Estimation. 2023 10th International Conference on Software Defined Systems, SDS 2023 (2023), 65–72. DOI: 10.1109/SDS59856.2023.10329194

Himansu Das, Ajay Kumar Jena, J. Chandrakant Badajena, Chittaranjan Pradhan, and R. K. Barik. 2018. Resource allocation in cooperative cloud environments. Vol. 710. Springer Singapore. 825–841 pages. DOI: 10.1007/978-981-10-7871-2_79

N. Deochake. 2024. Cloud cost optimization: A comprehensive review of strategies and case studies. arXiv preprint arXiv:2307.12479 (2024).

Saurabh Deochake. 2023. Cloud Cost Optimization: A Comprehensive Review of Strategies and Case Studies. Placeholder Publisher. [link].

Jay L. Devore, Nicholas R. Farnum, and Jimmy A. Doi. 2018. Applied Statistics for Engineers and Scientists (3 ed.). Cengage Learning, Boston, MA.

B. Dhayanandan and R. Rajeev. 2024. Cloud service price prediction using Machine Learning Algorithm with API in the case of Amazon Web Services and Microsoft Azure. 2024 International Conference on Intelligent Systems for Cybersecurity, ISCS 2024 (2024), 1–6. DOI: 10.1109/ISCS61804.2024.10581146

Jose Luis Diaz, Joaquin Entrialgo, Javier Garcia, Manuel Garcia, and Daniel F. Garcia. 2021. Analysis of the Influence of Per-Second Billing on Virtual Machine Allocation Costs in Public Clouds. IEEE Transactions on Services Computing 14, 6 (2021), 1690–1701. DOI: 10.1109/TSC.2019.2909896

Jose Luis Diaz, Javier Garcia, Joaquin Entrialgo, Manuel Garcia, and Daniel F. Garcia. 2020. Joint optimization of the cost of computation and virtual machine image storage in cloud infrastructure. 2020 International Symposium on Performance Evaluation of Computer and Telecommunication Systems, SPECTS 2020 - Proceedings (2020).

S. M.Reza Dibaj, Ali Miri, and Seyed Akbar Mostafavi. 2020. A cloud dynamic online double auction mechanism (DODAM) for sustainable pricing. Telecommun. Syst. 75, 4 (2020), 461–480. DOI: 10.1007/s11235-020-00688-4

Quan Ding, Bo Tang, Prakash Manden, and Jin Ren. 2018. A learning-based cost management system for cloud computing. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, CCWC 2018 2018-January (2018), 362–367. DOI: 10.1109/CCWC.2018.8301738

Tore Dyba and Torgeir Dingsoyr. 2008. Empirical Studies of Agile Software Development: A Systematic Review. 50, 9-10 (2008), 833–859.

Tarek Elgamal, Atul Sandur, Klara Nahrstedt, and Gul Agha. 2018. Optimizing cost of serverless computing through function fusion and placement. Proceedings - 2018 3rd ACM/IEEE Symposium on Edge Computing, SEC 2018 (2018), 300–312. DOI: 10.1109/SEC.2018.00029

Bugingo Emmanuel, Yingsheng Qin, Juntao Wang, Defu Zhang, and Wei Zheng. 2018. Cost optimization heuristics for deadline constrained workflow scheduling on clouds and their comparative evaluation. Concurrency Comput.: Pract. Exper. 30, 20 (2018), 1–14. DOI: 10.1002/cpe.4762

K. Anders Ericsson and Herbert A. Simon. 1993. Protocol Analysis: Verbal Reports as Data. MIT Press, Cambridge, MA.

Abdelkarim Erradi and Yaser Mansouri. 2020. Online cost optimization algorithms for tiered cloud storage services. 160 (2020), 110457. DOI: 10.1016/j.jss.2019.110457

FinOps Foundation. 2025. Calculating Container Costs. Technical Report. FinOps Foundation. [link] Focuses on cost allocation, visibility, and optimization techniques in containerized environments such as Kubernetes. Relevant to compute cost optimization..

FinOps Foundation. 2025. How to Optimize Cloud Usage. Technical Report. FinOps Foundation. [link] Includes practices for compute (right-sizing, autoscaling, spot instances, serverless), storage (snapshot cleanup, lifecycle policies, storage tiering), and network (data transfer optimization, CDN, caching)..

FinOps Foundation. 2025. Usage Optimization Opportunities Library. Technical Report. FinOps Foundation. [link] Presents practical use cases such as identifying unused snapshots, aborting incomplete multipart uploads, and enabling serverless tiers for databases..

Flexera. 2025. Flexera 2025 State of the Cloud Report. [link]. 14ª edição anual. Publicado em 19 de março de 2025; acesso em: 07 ago. 2025.

George Fragiadakis, Evangelia Filiopoulou, Christos Michalakelis, Thomas Kamalakis, and Mara Nikolaidou. 2023. Applying Machine Learning in Cloud Service Price Prediction: The Case of Amazon IaaS. 15, 8 (2023). DOI: 10.3390/fi15080277

Prerna Gaba, Himanshu, Preetitanya, and Yatin Gupta. 2023. Unlocking Efficiency - Multidimensional Cost Optimization Strategies for Cloud Infrastructure in Small and Medium-Sized Organizations. 2nd International Conference on Automation, Computing and Renewable Systems, ICACRS 2023 - Proceedings (2023), 463–470. DOI: 10.1109/ICACRS58579.2023.10404455

Javier Garcia, Joaquin Entrialgo, Jose Luis Diaz, Manuel Garcia, and Daniel F. Garcia. 2019. Influence of the trace resolution and length in the cost optimization process in cloud computing. Proceedings of the 2019 International Symposium on Performance Evaluation of Computer and Telecommunication Systems, SPECTS 2019 - Part of SummerSim 2019 Multiconference XX, YY (2019). DOI: 10.23919/SPECTS.2019.8823508

Gareth George, Rich Wolski, Chandra Krintz, and John Brevik. 2019. Analyzing AWS spot instance pricing. Proceedings - 2019 IEEE International Conference on Cloud Engineering, IC2E 2019 (2019), 222–228. DOI: 10.1109/IC2E.2019.00036

Muhammad Hamza, Muhammad Azeem Akbar, and Rafael Capilla. 2023. Understanding cost dynamics of serverless computing: An empirical study. In International Conference on Software Business. Springer-Verlag, Lappeenranta, Finland, 456–470.

Hassan B Hassan, Saman A Barakat, and Qusay I Sarhan. 2021. Survey on serverless computing. J. Cloud Comput. 10, 1 (2021), 39.

Marie C. Hoepfl. 1997. Choosing Qualitative Research: A Primer for Technology Education Researchers. 9, 1 (1997), 47–63.

Tarun Jain and Jishnu Hazra. 2019. "On-demand" pricing and capacity management in cloud computing. 18, 3 (2019), 228–246. DOI: 10.1057/s41272-018-0146-0

S Jayalakshmi et al. 2021. Predictive scaling for elastic compute resources on public cloud utilizing deep learning based long short-term memory. Int. J. Adv. Comput. Sci. Appl. 12, 10 (2021), 1–20.

Steffen Kächele, Christian Spann, Franz J. Hauck, and Jörg Domaschka. 2013. Beyond IaaS and PaaS: An Extended Cloud Taxonomy for Computation, Storage and Networking. In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing (UCC ’13). IEEE Computer Society, Washington, DC, USA, 75–82. DOI: 10.1109/UCC.2013.28

Ian A. Kash, Peter Key, and Warut Suksompong. 2019. Simple pricing schemes for the cloud. ACM Transactions on Economics and Computation 7, 2 (2019), 1–27. DOI: 10.1145/3327973

Deepak Kaul. 2019. Optimizing Resource Allocation in Multi-Cloud Environments with Artificial Intelligence: Balancing Cost, Performance, and Security. Journal of Information and Computer Technology Education) January 2019 (2019). [link]

Akif Quddus Khan, Mihhail Matskin, Radu Prodan, Christoph Bussler, Dumitru Roman, and Ahmet Soylu. 2024. Cloud storage cost: a taxonomy and survey. Vol. 27. Placeholder Publisher. 1–54 pages. DOI: 10.1007/s11280-024-01273-4

Akif Quddus Khan, Mihhail Matskin, Radu Prodan, Christoph Bussler, Dumitru Roman, and Ahmet Soylu. 2024. Cost modelling and optimisation for cloud: a graph-based approach. J. Cloud Comput. 13, 1 (2024), 147.

Khalid S Khan, Gerben Ter Riet, Julie Glanville, Amanda J Sowden, Jos Kleijnen, et al. 2001. Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. Number 4 (2n in CRD Report. NHS Centre for Reviews and Dissemination, York.

Jae Kim and Minsoo Park. 2025. Holistic multi-objective container orchestration for heterogeneous cloud clusters. IEEE Trans. Cloud Comput. (2025). Early Access.

Barbara Kitchenham. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering. EBSE Technical Report 2, 1 (2007), 1–57.

Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009. Systematic Literature Reviews in Software Engineering – A Systematic Literature Review. 51, 1 (2009), 7–15.

Barbara A. Kitchenham. 2004. Systematic Reviews. In Proceedings of the 10th International Symposium on Software Metrics. IEEE, IEEE, Chicago, IL, xii–xii.

Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. 2015. Evidence-Based Software Engineering and Systematic Reviews. Vol. 4. CRC Press, Boca Raton, FL. DOI: 10.1201/b19467

Dawei Kong, Shijun Liu, and Li Pan. 2021. Amazon Spot Instance Price Prediction with GRU Network. Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2021 (2021), 31–36. DOI: 10.1109/CSCWD49262.2021.9437881

Dinesh Kumar, Gaurav Baranwal, Zahid Raza, and Deo Prakash Vidyarthi. 2018. A Survey on Spot Pricing in Cloud Computing. 26, 4 (2018), 809–856. DOI: 10.1007/s10922-017-9444-x

K. Dinesh Kumar and E. Umamaheswari. 2018. Prediction methods for effective resource provisioning in cloud computing: A survey. Multiagent Grid Syst. 14, 3 (2018), 283–305. DOI: 10.3233/MGS-180292

Eva Maria Lakatos and Marina de Andrade Marconi. 2003. Fundamentos de Metodologia Científica (5 ed.). Atlas, São Paulo.

Chunlin Li, Jingpan Bai, and Youlong Luo. 2020. Efficient resource scaling based on load fluctuation in edge-cloud computing environment. Vol. 76. Springer US. 6994–7025 pages. DOI: 10.1007/s11227-019-03134-8

Fang Li, Gang Wu, Jianhua Lu, Mingye Jin, Haitao An, and Junxiong Lin. 2022. SmartCMP: A Cloud Cost Optimization Governance Practice of Smart Cloud Management Platform. Proceedings - 2022 IEEE 7th International Conference on Smart Cloud, SmartCloud 2022 X, Y (2022), 171–176. DOI: 10.1109/SmartCloud55982.2022.00034

Zhe Li, Yusong Tan, Bao Li, Jianfeng Zhang, and Xiaochuan Wang. 2021. A Survey of Cost Optimization in Serverless Cloud Computing. IOP Conference Series: Earth and Environmental Science 1802, 3 (2021). DOI: 10.1088/1742-6596/1802/3/032070

Zengpeng Li, Huiqun Yu, and Guisheng Fan. 2023. Cost-effective approaches for deadline-constrained workflow scheduling in clouds. J. Supercomput. 79, 7 (2023), 7484–7512. DOI: 10.1007/s11227-022-04962-x

Changyuan Lin and Hamzeh Khazaei. 2021. Modeling and Optimization of Performance and Cost of Serverless Applications. IEEE Transactions on Parallel and Distributed Systems 32, 3 (2021), 615–632. DOI: 10.1109/TPDS.2020.3028841

Mingyu Liu, Li Pan, and Shijun Liu. 2021. Keep Hot or Go Cold: A Randomized Online Migration Algorithm for Cost Optimization in STaaS Clouds. IEEE Trans. Netw. Serv. Manag. 18, 4 (2021), 4563–4575. DOI: 10.1109/TNSM.2021.3096533

Mingyu Liu, Li Pan, and Shijun Liu. 2023. Cost Optimization for Cloud Storage from User Perspectives: Recent Advances, Taxonomy, and Survey. ACM Comput. Surv. 55, 13s (2023), 1–20. DOI: 10.1145/3582883

Maria Lopez and Pedro Fernandes. 2024. Edge-aware storage tiering for cost and latency optimization in hybrid clouds. Future Gener. Comput. Syst. 158 (2024), 299–315.

Sharmistha Mandal, Giridhar Maji, Sunirmal Khatua, and Rajib K. Das. 2023. Cost Minimizing Reservation and Scheduling Algorithms for Public Clouds. IEEE Trans. Cloud Comput. 11, 2 (2023), 1365–1380. DOI: 10.1109/TCC.2021.3133464

Yaser Mansouri and Abdelkarim Erradi. 2018. Cost Optimization Algorithms for Hot and Cool Tiers Cloud Storage Services. IEEE International Conference on Cloud Computing, CLOUD 2018-July (2018), 622–629. DOI: 10.1109/CLOUD.2018.00086

Marina de Andrade Marconi and Eva Maria Lakatos. 2012. Técnicas de pesquisa: Planejamento e execução de pesquisas, amostragens e técnicas de pesquisa, elaboração, análise e interpretação de dados. In Técnicas de pesquisa: planejamento e execução de pesquisa; amostragens e técnicas de pesquisa; elaboração, análise e interpretação de dados (7 ed.). Atlas, São Paulo, 277–277.

Dan C. Marinescu. 2017. Cloud Computing: Theory and Practice (2nd ed.). Morgan Kaufmann, Boston, MA, USA.

Peter Mell and Timothy Grance. 2011. The NIST Definition of Cloud Computing. Special Publication 800-145. National Institute of Standards and Technology, Gaithersburg, MD, USA. [link]

Peter Mell and Timothy Grance. 2011. The NIST Definition of Cloud Computing. NIST Special Publication 800-145. National Institute of Standards and Technology, Gaithersburg, MD, USA. 1–7 pages. DOI: 10.6028/NIST.SP.800-145

Fanchao Meng, Qingran Ji, Dinahui Chu, and Xuequan Zhou. 2021. Modeling and Solution Algorithm of Virtual Machines Optimization Provision Problem for Application Deployment in Public Cloud. 19th IEEE International Symposium on Parallel and Distributed Processing with Applications, 11th IEEE International Conference on Big Data and Cloud Computing, 14th IEEE International Conference on Social Computing and Networking and 11th IEEE International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2021 (2021), 1378–1385. DOI: 10.1109/ISPABDCloud-SocialCom-SustainCom52081.2021.00188

Dimitar Mileski and Marjan Gusev. 2023. FinOps in Cloud-Native Near Real-Time Serverless Streaming Solutions. 2023 31st Telecommunications Forum, TELFOR 2023 - Proceedings (2023), 1–4. DOI: 10.1109/TELFOR59449.2023.10372626

Ashish Kumar Mishra, Brajesh Kumar Umrao, and Dharmendra K. Yadav. 2018. A survey on optimal utilization of preemptible VM instances in cloud computing. J. Supercomput. 74, 11 (2018), 5980–6032. DOI: 10.1007/s11227-018-2509-0

David A. Monge, Elina Pacini, Cristian Mateos, and Carlos García Garino. 2018. Meta-heuristic based autoscaling of cloud-based parameter sweep experiments with unreliable virtual machines instances. Comput. Electr. Eng. 69 (2018), 364–377. DOI: 10.1016/j.compeleceng.2017.12.007

Koyel Mukherjee, Raunak Shah, Shiv Saini, Karanpreet Singh, Khushi, Harsh Kesarwani, Kavya Barnwal, and Ayush Chauhan. 2023. Towards Optimizing Storage Costs on the Cloud. Proceedings - International Conference on Data Engineering 2023-April (2023), 2919–2932. DOI: 10.1109/ICDE55515.2023.00223

Piotr Nawrocki and Mateusz Smendowski. 2023. Long-Term Prediction of Cloud Resource Usage in High-Performance Computing. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 14074 LNCS (2023), 532–546. DOI: 10.1007/978-3-031-36021-3_53

Piotr Nawrocki and Mateusz Smendowski. 2024. FinOps-driven optimization of cloud resource usage for high-performance computing using machine learning. J. Comput. Sci. 79, April (2024), 102292. DOI: 10.1016/j.jocs.2024.102292

Piotr Nawrocki and Mateusz Smendowski. 2024. Optimization of the Use of Cloud Computing Resources Using Exploratory Data Analysis and Machine Learning. 14, 4 (2024), 287–308. DOI: 10.2478/jaiscr-2024-0016

Piotr Nawrocki and Mateusz Smendowski. 2025. A Survey of Cloud Resource Consumption Optimization Methods. 23, 5 (2025), 5. DOI: 10.1007/s10723-024-09792-0

Jose Pergentino A. Neto, Donald M. Pianto, and Célia Ghedini Ralha. 2018. A Prediction Approach to Define Checkpoint Intervals in Spot Instances. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10967 LNCS, June (2018), 84–93. DOI: 10.1007/978-3-319-94295-7_6

Seyed Soroush Nezamdoust, Mohammad Ali Pourmina, and Farbod Razzazi. 2023. Optimal prediction of cloud spot instance price utilizing deep learning. J. Supercomput. 79, 7 (2023), 7626–7647. DOI: 10.1007/s11227-022-04970-x

Patryk Osypanka and Piotr Nawrocki. 2022. Resource Usage Cost Optimization in Cloud Computing Using Machine Learning. IEEE Trans. Cloud Comput. 10, 3 (2022), 2079–2089. DOI: 10.1109/TCC.2020.3015769

Jay Oza, Rishi More, Amit Maity, Gitesh Kambli, Chirag Maniyath, and Abhijit Patil. 2024. PRISM: Predictive Resource Inference and Spot Instance Management. 2024 3rd International Conference for Advancement in Technology, ICONAT 2024 XX, YY (2024), 1–6. DOI: 10.1109/ICONAT61936.2024.10774810

Rajesh Patel and Arjun Singh. 2024. FinOps 2.0: Intelligent financial operations for multi-cloud environments. ACM Comput. Surv. 56, 4 (2024), 1–38.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic Mapping Studies in Software Engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) (Italy). BCS Learning & Development, BCS, Swindon, GBR, 1–10.

Mark Petticrew and Helen Roberts. 2008. Systematic Reviews in the Social Sciences: A Practical Guide. John Wiley & Sons, Chichester, UK.

Sivakumar Ponnusamy and Mandar Khoje. 2024. Optimizing Cloud Costs with Machine Learning: Predictive Resource Scaling Strategies. 2024 5th International Conference on Innovative Trends in Information Technology, ICITIIT 2024 X, Y (2024), 1–8. DOI: 10.1109/ICITIIT61487.2024.10580717

S. Ramamoorthy, G. Ravikumar, B. Saravana Balaji, S. Balakrishnan, and K. Venkatachalam. 2021. MCAMO: multi constraint aware multi-objective resource scheduling optimization technique for cloud infrastructure services. J. Ambient Intell. Humaniz. Comput. 12, 6 (2021), 5909–5916. DOI: 10.1007/s12652-020-02138-0

Aishwarya Ramesh, Vishal Pradhan, and Hemraj Lamkuche. 2021. Understanding and Analysing Resource Utilization, Costing Strategies and Pricing Models in Cloud Computing. J. Phys.: Conf. Ser. 1964, 4 (2021), 042049. DOI: 10.1088/1742-6596/1964/4/042049

Shweta Rani and Manoj Gupta. 2024. Predictive resource allocation using deep reinforcement learning for cloud cost efficiency. IEEE Trans. Netw. Serv. Manag. (2024). Early Access.

Pradeep Singh Rawat, Priti Dimri, and Gyanendra Pal Saroha. 2020. Virtual machine allocation to the task using an optimization method in cloud computing environment. Int. J. Inf. Technol. 12, 2 (2020), 485–493. DOI: 10.1007/s41870-018-0242-9

Thiago Reis, Mario Teixeira, Joao Almeida, and Anselmo Paiva. 2020. A Recommender for Resource Allocation in Compute Clouds Using Genetic Algorithms and SVR. IEEE Latin America Transactions 18, 6 (2020), 1049–1056. DOI: 10.1109/TLA.2020.9099682

Dhruv Seth, Harshavardhan Nerella, Madhavi Najana, and Ayisha Tabbassum. 2024. Navigating the multi-cloud maze: benefits, challenges, and future trends. Int. J. Glob. Innov. Solut. (2024).

Mark Shifrin, Roy Mitrany, Erez Biton, and Omer Gurewitz. 2022. VM Scaling and Load Balancing via Cost Optimal MDP Solution. IEEE Trans. Cloud Comput. 10, 3 (2022), 2219–2237. DOI: 10.1109/TCC.2020.3000956

Vivek Kumar Singh, Shivendu Shivendu, and Kaushik Dutta. 2022. Spot instance similarity and substitution effect in cloud spot market. Decis. Support Syst. 159, November 2021 (2022), 113815. DOI: 10.1016/j.dss.2022.113815

Mateusz Smendowski and Piotr Nawrocki. 2024. Optimizing multi-time series forecasting for enhanced cloud resource utilization based on machine learning. Knowl.-Based Syst. 304, June (2024), 112489. DOI: 10.1016/j.knosys.2024.112489

Georgios Spanos and Lefteris Angelis. 2016. The Impact of Information Security Events to the Stock Market: A Systematic Literature Review. Computers & Security 58 (2016), 216–229. DOI: 10.1016/j.cose.2015.12.006

Devesh Kumar Srivastava, Sumit Kumar Gupta, Pradeep Kumar Tiwari, and Manjiit Kaur. 2024. Resource Management on Cloud Computing Using Machine Learning. Proceedings - International Conference on Computational Intelligence and Networks XX, YY (2024), 1–6. DOI: 10.1109/CINE63708.2024.10881266

Kavita Srivastava and Manisha Agarwal. 2024. Maximizing Cloud Resource Utility: Region-Adaptive Optimization via Machine Learning-Informed Spot Price Predictions. Lecture Notes in Networks and Systems 997 LNNS (2024), 449–459. DOI: 10.1007/978-981-97-3242-5_30

J.R. Storment and M. Fuller. 2023. Cloud FinOps: Collaborative, Real-Time Cloud Financial Management (2nd ed.). O’Reilly Media, Inc., Sebastopol, CA. DOI: 10.5555/3587612

Fuquan Sun, Zhenghao Lu, Jikui Pan, and Zijian Wang. 2021. A Cost Optimization Strategy for Workflow Scheduling in Cloud. Proceedings of the 33rd Chinese Control and Decision Conference, CCDC 2021 1, 1 (2021), 270–274. DOI: 10.1109/CCDC52312.2021.9601544

Cristiano Costa Argemon Vieira, Luiz Fernando Bittencourt, Thiago Augusto Lopes Genez, Maycon Leone M. Peixoto, and Edmundo Roberto Mauro Madeira. 2024. RAaaS: Resource Allocation as a Service in multiple cloud providers. 221, February 2023 (2024), 103790. DOI: 10.1016/j.jnca.2023.103790

Mira Vrbaski, Miodrag Bolic, and Shikharesh Majumdar. 2022. Multi-objective optimization for cloud provisioning: A case study in large-scale microservice notification applications. Proceedings - 2022 International Conference on Future Internet of Things and Cloud, FiCloud 2022 XX, YY (2022), 190–198. DOI: 10.1109/FiCloud57274.2022.00033

Danjing Wang, Huifang Li, Youwei Zhang, and Baihai Zhang. 2023. Gradient-Based Scheduler for Scientific Workflows in Cloud Computing. 27, 1 (2023), 64–73. DOI: 10.20965/jaciii.2023.p0064

CaesarWu, Rajkumar Buyya, and Kotagiri Ramamohanarao. 2019. Cloud Pricing Models: Taxonomy, Survey, and Interdisciplinary Challenges. ACM Comput. Surv. 52, 6 (2019), 108:1–108:36. DOI: 10.1145/3342103

Mingyu Wu, Zeyu Mi, and Yubin Xia. 2020. A Survey on Serverless Computing and Its Implications for JointCloud Computing. In 2020 IEEE International Conference on Joint Cloud Computing. IEEE, New York, NY, 94–101. DOI: 10.1109/JCC49151.2020.00023

Y. Wu, R. Buyya, et al. 2024. Cost optimization for cloud storage from user perspectives: Recent advances, taxonomy, and survey. World Wide Web 27, 1 (2024), 45–78.

Yongjie Xie, Li Pan, Shengsong Yang, and Shijun Liu. 2022. A Random Online Algorithm for Reselling Reserved IaaS Instances in Amazon’s Cloud Marketplace. IEEE Transactions on Network Science and Engineering 9, 3 (2022), 1235–1244. DOI: 10.1109/TNSE.2021.3138932

Shengsong Yang, Li Pan, and Shijun Liu. 2019. An online algorithm for selling your reserved IaaS instances in amazon EC2 marketplace. Proceedings - 2019 IEEE International Conference on Web Services, ICWS 2019 - Part of the 2019 IEEE World Congress on Services X, Y (2019), 296–303. DOI: 10.1109/ICWS.2019.00057

Shengsong Yang, Li Pan, QingyangWang, and Shijun Liu. 2018. To sell or not to sell: Trading your reserved instances in amazon EC2 marketplace. Proceedings - International Conference on Distributed Computing Systems 2018-July, 1 (2018), 939–948. DOI: 10.1109/ICDCS.2018.00095

Shengsong Yang, Li Pan, Qingyang Wang, Shijun Liu, and Shuo Zhang. 2018. Subscription or Pay-as-You-Go: Optimally Purchasing IaaS Instances in Public Clouds. In Proceedings - 2018 IEEE International Conference on Web Services, ICWS 2018 - Part of the 2018 IEEE World Congress on Services. IEEE, New York, NY, USA, 219–226. DOI: 10.1109/ICWS.2018.00035

Rehmana Younis, Muhammad Aaqib Javed, Mansoor Iqbal, Khalid Munir, Muhammad Haris, and Saad Alahmari. 2024. A Comprehensive Analysis of Cloud Service Models: IaaS, PaaS and SaaS in the Context of Emerging Technologies and Trend. In Proceedings of the 2024 International Conference on Electrical, Communication and Computer Engineering (ICECCE). IEEE, Kuala Lumpur, Malaysia, 1–6. DOI: 10.1109/ICECCE63537.2024.10823401

H. Zhang et al. 2024. Intelligent orchestration for heterogeneous cloud environments. Future Gener. Comput. Syst. 157 (2024), 512–526.

Peipei Zhou, Jiayi Sheng, Cody Hao Yu, Peng Wei, Jie Wang, Di Wu, and Jason Cong. 2021. MOCHA: Multinode cost optimization in heterogeneous clouds with accelerators. FPGA 2021 - 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays 1, 1 (2021), 273–279. DOI: 10.1145/3431920.3439304

Xiumin Zhou, Gongxuan Zhang, Jin Sun, Junlong Zhou, Tongquan Wei, and Shiyan Hu. 2019. Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT. Future Gener. Comput. Syst. 93 (2019), 278–289. DOI: 10.1016/j.future.2018.10.046
Publicado
10/11/2025
SOARES, Elisa de Fátima Andrade; CAVALCANTI, David Junio Mota; SETTE, Ioram Schechtman; FERRAZ, Carlos André Guimarães. Estratégias de Redução de Custos em Nuvem sob a Perspectiva do Usuário: Um Mapeamento Sistemático. In: BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB (WEBMEDIA), 31. , 2025, Rio de Janeiro/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 609-622. DOI: https://doi.org/10.5753/webmedia.2025.16088.