Saturn Platform: Foundation Model Operations and Generative AI for Financial Services

  • Antonio J. G. Busson BTG Pactual
  • Rennan Gaio BTG Pactual
  • Rafael H. Rocha BTG Pactual
  • Francisco Evangelista BTG Pactual
  • Bruno Rizzi BTG Pactual
  • Luan Carvalho BTG Pactual
  • Rafael Miceli BTG Pactual
  • Marcos Rabaioli BTG Pactual
  • David Favaro BTG Pactual


Saturn is an innovative platform that assists Foundation Model (FM) building and its integration with IT operations (Ops). It is custom-made to meet the requirements of data scientists, enabling them to effectively create and implement FMs while enhancing collaboration within their technical domain. By offering a wide range of tools and features, Saturn streamlines and automates different stages of FM development, making it an invaluable asset for data science teams. In this white paper, we discuss the expected impacts of Saturn on the financial sector.
Palavras-chave: Foundation Model, Generative AI, FMOps, Saturn


Abubakar Abid, Maheen Farooqi, and James Zou. 2021. Persistent anti-muslim bias in large language models. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. 298–306.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021).

Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. Advances in neural information processing systems 28 (2015).

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146 (2018).

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. 2020. Tabtransformer: Tabular data modeling using contextual embeddings. arXiv preprint arXiv:2012.06678 (2020).

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT. 4171–4186.

JDMCK Lee and K Toutanova. 2018. Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

Andy T Liu, Shu-wen Yang, Po-Han Chi, Po-chun Hsu, and Hung-yi Lee. 2020. Mockingjay: Unsupervised speech representation learning with deep bidirectional transformer encoders. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 6419–6423.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. 2023. Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023).

Long Ouyang, JeffWu, Xu Jiang, Diogo Almeida, Carroll L.Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with human feedback. arXiv:2203.02155 [cs.CL]

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. arXiv:1802.05365 [cs.CL]

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by generative pre-training. (2018).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

Daniel Rothchild, Alex Tamkin, Julie Yu, Ujval Misra, and Joseph Gonzalez. 2021. C5t5: Controllable generation of organic molecules with transformers. arXiv preprint arXiv:2108.10307 (2021).

Alex Tamkin, Mike Wu, and Noah Goodman. 2020. Viewmaker networks: Learning views for unsupervised representation learning. arXiv preprint arXiv:2010.07432 (2020).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang He, et al. 2023. A comprehensive survey on pretrained foundation models: A history from bert to chatgpt. arXiv preprint arXiv:2302.09419 (2023).
BUSSON, Antonio J. G. et al. Saturn Platform: Foundation Model Operations and Generative AI for Financial Services. In: WORKSHOP DE FERRAMENTAS E APLICAÇÕES - SIMPÓSIO BRASILEIRO DE SISTEMAS MULTIMÍDIA E WEB (WEBMEDIA), 29. , 2023, Ribeirão Preto/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 85-88. ISSN 2596-1683. DOI: