VALERIA: um aplicativo para auxiliar no diagnóstico diferencial de arboviroses
Resumo
Brazil is one of the countries with the highest incidence of Neglected Tropical Diseases (NTDs), especially in the North and Northwest regions. Arboviruses, such as Dengue and Chikungunya, transmitted by mosquitoes, are the most common in the country. Arbovirus infection can cause persistent symptoms and negatively impact patients’ quality of life, resulting in economic challenges for public health. Accurate diagnoses are essential, but the financial limitation for large-scale laboratory testing is a barrier. In this context, VALERIA is presented as a solution through the use of machine learning models to assist in the classification of arboviruses, relying solely on patients’ clinical information, offering targeted treatments, and promoting positive social impact in the Brazilian territory.
Referências
Juliana Rodrigues da Conceição, Cecília Gatti Petrilli Lopes, Elizabeth Igne Ferreira, Sabrina Epiphanio, and Jeanine Giarolla. 2022. Neglected tropical diseases and systemic racism especially in Brazil: from socio-economic aspects to the development of new drugs. Acta Tropica (2022), 106654.
Sebastião Rogério da Silva Neto, Thomás Tabosa de Oliveira, Vanderson de Souza Sampaio, Theo Lynn, and Patricia Takako Endo. 2020. Platform for monitoring and clinical diagnosis of arboviruses using computational models. In 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). IEEE, 1–3.
Sebastião Rogerio Da Silva Neto, Thomás Tabosa, Leonides Medeiros Neto, Igor Vitor Teixeira, Sara Sadok, Vanderson De Souza Sampaio, and Patricia Takako Endo. 2023. Binary Models for Arboviruses Classification Using Machine Learning: A Benchmarking Evaluation. (2023).
Sebastião Rogério da Silva Neto, Thomás Tabosa de Oliveira, Igor Vitor Teixiera, Leonides Medeiros Neto, Vanderson Souza Sampaio, Theo Lynn, and Patricia Takako Endo. 2022. Arboviral disease record data-dengue and chikungunya, brazil, 2013–2020. Scientific Data 9, 1 (2022), 198.
Sebastião Rogério da Silva Neto, Thomás Tabosa Oliveira, Igor Vitor Teixeira, Samuel Benjamin Aguiar de Oliveira, Vanderson Souza Sampaio, Theo Lynn, and Patricia Takako Endo. 2022. Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review. PLOS Neglected Tropical Diseases 16, 1 (2022), e0010061.
Thomás Tabosa de Oliveira, Sebastião Rogério da Silva Neto, Igor Vitor Teixeira, Patricia Takako Endo, and Vanderson Souza Sampaio. 2021. VALERIA: Uma Plataforma para Auxiliar o Diagnóstico e o Monitoramento de Arboviroses. In Anais Estendidos do XXVII Simpósio Brasileiro de Sistemas Multimídia e Web. SBC, 103–106.
Tamara Nunes Lima-Camara. 2016. Arboviroses emergentes e novos desafios para a saúde pública no Brasil. Revista de Saúde Pública 50 (2016).
José Angelo L Lindoso and Ana Angélica BP Lindoso. 2009. Neglected tropical diseases in Brazil. Revista do Instituto de Medicina Tropical de São Paulo 51 (2009), 247–253.
Francisco Rogerlândio Martins-Melo, Alberto Novaes Ramos Jr, Carlos Henrique Alencar, and Jorg Heukelbach. 2016. Mortality from neglected tropical diseases in Brazil, 2000–2011. Bulletin of the World Health Organization 94, 2 (2016), 103.
OPAS. 2022. Casos Reportados de Dengue en las Américas. [link].
World Health Organization et al. 2017. Towards universal coverage for preventive chemotherapy for neglected tropical diseases: guidance for assessing “who is being left behind and why”: working draft for further piloting during 2018-2019. Technical Report. World Health Organization.
Thomás Tabosa de Oliveira, Sebastião Rogério da Silva Neto, Igor Vitor Teixeira, Samuel Benjamin Aguiar de Oliveira, Maria Gabriela de Almeida Rodrigues, Vanderson Souza Sampaio, and Patricia Takako Endo. 2022. A Comparative Study of Machine Learning Techniques for Multi-Class Classification of Arboviral Diseases. Frontiers in Tropical Diseases 2 (2022), 769968.