Learning Assessment of Machine Learning in K-12: A Systematic Mapping
Abstract
Machine learning (ML) is being increasingly integrated into our life. Thus, to demystify ML several instructional units are emerging teaching ML already in K-12. Yet, especially the assessment of the learning of ML concepts remains an open issue. Thus, in order to provide an overview on the current state of the art regarding the assessment of the learning of ML in K-12, we performed a systematic mapping. We identified 15 instructional units on ML, which also present the assessment of the students’ learning, mostly in a simple manner by few test questions/quizzes with few proposing performance-based assessments. However, an evident lack of systematic definition and validation of these assessments indicates the need for further research.
Keywords:
Learning assessment, Machine Learning, K-12
References
Bloom, B. S.; Engelhart, M. D.; Furst, E. J.; Hill, W. H.; Krathwohl, D. R. Taxonomy of educational objectives. New York: David McKay Company, 1956.
Camada, M. Y.; Durães, G. M. Ensino da Inteligência Artificial na Educação Básica: um novo horizonte para as pesquisas brasileiras. Anais do Simpósio Brasileiro de Informática na Educação, online, 2020.
CSTA. CSTA K-12 Computer Science Standards. ACM, New York, NY, USA, 2011.
Evangelista, I.; Blesio, G.; Benatti, E. Why Are We Not Teaching Machine Learning at High School? A Proposal. World Engineering Education Forum, Albuquerque, NM, USA.,2018.
Galan, D.; Heradio, R.; Vargas, H.; Abad, I.; Cerrada, J. A. Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience. IEEE Access, 7, 2019.
Gresse von Wangenheim, C.; Hauck, J. C. R.; Pacheco, F. S.; Bertonceli Bueno, M. F. Ferramentas Visuais para o Ensino de Machine Learning na Educação Básica. RENOTE, 18(2), 2020.
Hattie, J; Timperley, H. The power of feedback. Review of Educational Research, 77(1), 2007.
Ho, J. W. K.; Scadding, M. Classroom Activities for Teaching Artificial Intelligence to Primary School Students. Proc. of the Int.Conference on Computational Thinking, Hong Kong, China, 2019.
Hubwieser, P. et al. A Global Snapshot of Computer Science Education in K-12 Schools. Proc. of the ITiCSE on Working Group Reports, Vilnius, Lithuania. 2015.
Kahn, K. M.; Lu, Y., Zhang, J.; Winters, N.; Gao, M. Deep learning programming by all. Proc. of the Conference on Constructionism, Dublin, Ireland. 2020.
Kandlhofer, M.; Steinbauer G.; Hirschmugl-Gaisch S.; Huber, P. Artificial Intelligence and Computer Science in Education. Proc. of the Frontiers in Education Conference, Erie, PA, USA, 2016.
Lye, S. Y.; Koh, J. H. L. Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 2014.
Marques, L. S.; Gresse von Wangenheim, C.; Hauck, J. C. R. Hauck. Ensino de Machine Learning na Educação Básica: um Mapeamento Sistemático do Estado da Arte. Anais do Simpósio Brasileiro de Informática na Educação, Natal, Brasil, 2020.
McGovern, A.; Tidwell, Z.; Rushing, D. Teaching Introductory Artificial Intelligence through Java-Based Games. Proc. of the 2nd Symposium on Educational Advances in Artificial Intelligence, San Francisco, CA, USA, 2011.
Oliveira, M.; Oliveira, E. Metodologia de Diagnóstico e Regulação de Componentes de Habilidades da Aprendizagem de Programação. Anais do Workshop sobre Educação em Computação, Brasília, Brasil, 2014.
Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic Mapping Studies in Software Engineering. Proc. of the 12th Int. Conference on Evaluation and Assessment in Software Engineering, Bari, Italy, 2008.
Piasecki, J.; Waligora, M.; Dranseika, V. Google Search as an Additional Source in Systematic Reviews. Science and Engineering Ethics 24, 2018.
Sanusi, I. T.; Oyelere, S. S. Pedagogies of Machine Learning in K-12 Context. IEEE Frontiers in Education ConferenceUppsala, Sweden, 2020.
Tang, D.; Utsumi, Y.; Lao, N. PIC: A Personal Image Classification Webtool for High School Students. Proc. of the Int. Joint Conferences on Artificial Intelligence, Macao, China, 2019.
Tissenbaum, M.; Sheldon, J.; Abelson, H. From computational thinking to computational action. Communications of the ACM, 62(3), 2019.
Torrey, L. Teaching Problem-Solving in Algorithms and AI. Proc. of the 3rd Symposium on Educational Advances in Artificial Intelligence, Toronto, Ontario, Canada, 2012.
Touretzky, D. S. et al. Envisioning AI for K-12: What Should Every Child Know about AI? Proc. of the 33rd Conf. on Artificial Intelligence, Honolulu, HI, USA, 2019.
Zhou, X.; Brummelen, J. V.; Lin, P. Designing AI Learning Experiences for K-12: Emerging Works, Future Opportunities and a Design Framework, arXiv, 2020.
Camada, M. Y.; Durães, G. M. Ensino da Inteligência Artificial na Educação Básica: um novo horizonte para as pesquisas brasileiras. Anais do Simpósio Brasileiro de Informática na Educação, online, 2020.
CSTA. CSTA K-12 Computer Science Standards. ACM, New York, NY, USA, 2011.
Evangelista, I.; Blesio, G.; Benatti, E. Why Are We Not Teaching Machine Learning at High School? A Proposal. World Engineering Education Forum, Albuquerque, NM, USA.,2018.
Galan, D.; Heradio, R.; Vargas, H.; Abad, I.; Cerrada, J. A. Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience. IEEE Access, 7, 2019.
Gresse von Wangenheim, C.; Hauck, J. C. R.; Pacheco, F. S.; Bertonceli Bueno, M. F. Ferramentas Visuais para o Ensino de Machine Learning na Educação Básica. RENOTE, 18(2), 2020.
Hattie, J; Timperley, H. The power of feedback. Review of Educational Research, 77(1), 2007.
Ho, J. W. K.; Scadding, M. Classroom Activities for Teaching Artificial Intelligence to Primary School Students. Proc. of the Int.Conference on Computational Thinking, Hong Kong, China, 2019.
Hubwieser, P. et al. A Global Snapshot of Computer Science Education in K-12 Schools. Proc. of the ITiCSE on Working Group Reports, Vilnius, Lithuania. 2015.
Kahn, K. M.; Lu, Y., Zhang, J.; Winters, N.; Gao, M. Deep learning programming by all. Proc. of the Conference on Constructionism, Dublin, Ireland. 2020.
Kandlhofer, M.; Steinbauer G.; Hirschmugl-Gaisch S.; Huber, P. Artificial Intelligence and Computer Science in Education. Proc. of the Frontiers in Education Conference, Erie, PA, USA, 2016.
Lye, S. Y.; Koh, J. H. L. Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 2014.
Marques, L. S.; Gresse von Wangenheim, C.; Hauck, J. C. R. Hauck. Ensino de Machine Learning na Educação Básica: um Mapeamento Sistemático do Estado da Arte. Anais do Simpósio Brasileiro de Informática na Educação, Natal, Brasil, 2020.
McGovern, A.; Tidwell, Z.; Rushing, D. Teaching Introductory Artificial Intelligence through Java-Based Games. Proc. of the 2nd Symposium on Educational Advances in Artificial Intelligence, San Francisco, CA, USA, 2011.
Oliveira, M.; Oliveira, E. Metodologia de Diagnóstico e Regulação de Componentes de Habilidades da Aprendizagem de Programação. Anais do Workshop sobre Educação em Computação, Brasília, Brasil, 2014.
Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic Mapping Studies in Software Engineering. Proc. of the 12th Int. Conference on Evaluation and Assessment in Software Engineering, Bari, Italy, 2008.
Piasecki, J.; Waligora, M.; Dranseika, V. Google Search as an Additional Source in Systematic Reviews. Science and Engineering Ethics 24, 2018.
Sanusi, I. T.; Oyelere, S. S. Pedagogies of Machine Learning in K-12 Context. IEEE Frontiers in Education ConferenceUppsala, Sweden, 2020.
Tang, D.; Utsumi, Y.; Lao, N. PIC: A Personal Image Classification Webtool for High School Students. Proc. of the Int. Joint Conferences on Artificial Intelligence, Macao, China, 2019.
Tissenbaum, M.; Sheldon, J.; Abelson, H. From computational thinking to computational action. Communications of the ACM, 62(3), 2019.
Torrey, L. Teaching Problem-Solving in Algorithms and AI. Proc. of the 3rd Symposium on Educational Advances in Artificial Intelligence, Toronto, Ontario, Canada, 2012.
Touretzky, D. S. et al. Envisioning AI for K-12: What Should Every Child Know about AI? Proc. of the 33rd Conf. on Artificial Intelligence, Honolulu, HI, USA, 2019.
Zhou, X.; Brummelen, J. V.; Lin, P. Designing AI Learning Experiences for K-12: Emerging Works, Future Opportunities and a Design Framework, arXiv, 2020.
Published
2021-07-20
How to Cite
SALVADOR, Gustavo de Castro; WANGENHEIM, Christiane Gresse von; RAUBER, Marcelo Fernando; GARCIA, Abisague Belem; BORGATTO, Adriano F..
Learning Assessment of Machine Learning in K-12: A Systematic Mapping. In: WORKSHOP ON COMPUTING EDUCATION (WEI), 29. , 2021, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 278-287.
ISSN 2595-6175.
DOI: https://doi.org/10.5753/wei.2021.15919.
