Análise dos principais fatores que influenciam a evasão no ensino superior utilizando técnicas de mineração de dados educacionais
Resumo
A evasão persiste no ensino superior brasileiro, apesar do aumento nas matrículas. Este estudo propõe uma metodologia inovadora para detectar alunos em risco de evasão na UNIVESP, utilizando mineração e análise de dados educacionais. A técnica envolve pré-processamento, seleção de características e aprendizado de máquina para identificar padrões de evasão. Antecipando esses casos, estratégias preventivas e apoio personalizado podem promover o sucesso dos estudantes. Esta metodologia identifica os principais fatores de evasão, fornecendo insights para políticas educacionais. Resultados preliminares mostram 92% de acurácia na identificação de alunos em risco, com menos de 20% das características dos dados, evidenciando sua eficácia.Referências
Agresti, A. (2012). Categorical data analysis, volume 792. John Wiley & Sons.
Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish journal of emergency medicine, 18(3):91–93.
Belenke dos Santos, J. C. (2021). Usando mineração de dados para predição da evasão escolar.
Bittencourt, H. R. (2003). Regressão logística politômica: revisão teórica e aplicações. Acta Scientiae, 5(1):77–86.
BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais (Inep). Censo da Educação Superior. Brasília, DF (2023). INESP. [link].
Chen, T. and Guestrin, C. (2016a). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.
Chen, T. and Guestrin, C. (2016b). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA. ACM.
Dong, G. and Liu, H. (2018). Feature engineering for machine learning and data analytics. CRC press.
e Cleber Alcântara, M. L. (2018). Predição de alunos com risco de evasão: estudo de caso usando mineração de dados. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação - SBIE), 29(1):1921.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232.
Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ”O’Reilly Media, Inc.”.
Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic regression. John Wiley & Sons.
Liu, Y., Wang, Y., and Zhang, J. (2012). New machine learning algorithm: Random forest. In Information Computing and Applications: Third International Conference, ICICA 2012, Chengde, China, September 14-16, 2012. Proceedings 3, pages 246–252. Springer.
Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1):381–386.
McKinney, W. et al. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX.
Monard, M. C. and Baranauskas, J. A. (2003). Conceitos sobre aprendizado de máquina. Sistemas inteligentes-Fundamentos e aplicações, 1(1):32.
Oliveira, L. R. and Costa, S. R. (2021). Fatores que contribuem para a evasão escolar em cursos de nível superior. Revista Espacios, 42(11).
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
Powell, S. (2018). The book of why: The new science of cause and effect. pearl, judea, and dana mackenzie. 2018. hachette uk. Journal of MultiDisciplinary Evaluation, 14(31):47–54.
Romero, C., Romero, J. R., and Ventura, S. (2014). A survey on pre-processing educational data. Educational data mining: applications and trends, pages 29–64.
Schmitt, J. A. et al. (2018). Identificação de alunos com tendência à evasão nos cursos de graduação à distância por meio de mineração de dados educacionais.
Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish journal of emergency medicine, 18(3):91–93.
Belenke dos Santos, J. C. (2021). Usando mineração de dados para predição da evasão escolar.
Bittencourt, H. R. (2003). Regressão logística politômica: revisão teórica e aplicações. Acta Scientiae, 5(1):77–86.
BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais (Inep). Censo da Educação Superior. Brasília, DF (2023). INESP. [link].
Chen, T. and Guestrin, C. (2016a). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.
Chen, T. and Guestrin, C. (2016b). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA. ACM.
Dong, G. and Liu, H. (2018). Feature engineering for machine learning and data analytics. CRC press.
e Cleber Alcântara, M. L. (2018). Predição de alunos com risco de evasão: estudo de caso usando mineração de dados. Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação - SBIE), 29(1):1921.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232.
Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ”O’Reilly Media, Inc.”.
Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic regression. John Wiley & Sons.
Liu, Y., Wang, Y., and Zhang, J. (2012). New machine learning algorithm: Random forest. In Information Computing and Applications: Third International Conference, ICICA 2012, Chengde, China, September 14-16, 2012. Proceedings 3, pages 246–252. Springer.
Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1):381–386.
McKinney, W. et al. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX.
Monard, M. C. and Baranauskas, J. A. (2003). Conceitos sobre aprendizado de máquina. Sistemas inteligentes-Fundamentos e aplicações, 1(1):32.
Oliveira, L. R. and Costa, S. R. (2021). Fatores que contribuem para a evasão escolar em cursos de nível superior. Revista Espacios, 42(11).
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
Powell, S. (2018). The book of why: The new science of cause and effect. pearl, judea, and dana mackenzie. 2018. hachette uk. Journal of MultiDisciplinary Evaluation, 14(31):47–54.
Romero, C., Romero, J. R., and Ventura, S. (2014). A survey on pre-processing educational data. Educational data mining: applications and trends, pages 29–64.
Schmitt, J. A. et al. (2018). Identificação de alunos com tendência à evasão nos cursos de graduação à distância por meio de mineração de dados educacionais.
Publicado
21/07/2024
Como Citar
CORREIA, Ronaldo Celso Messias; MENDONÇA, Harrison Buziquia de; SILVA, Camila Tolin Santos Da; TOLEDO, Douglas Francisquini.
Análise dos principais fatores que influenciam a evasão no ensino superior utilizando técnicas de mineração de dados educacionais. In: WORKSHOP SOBRE EDUCAÇÃO EM COMPUTAÇÃO (WEI), 32. , 2024, Brasília/DF.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 830-841.
ISSN 2595-6175.
DOI: https://doi.org/10.5753/wei.2024.3105.