Automatic Lesson Plan Generator on Technology Based on LLMs
Abstract
This research addresses the challenges of introducing computing into Brazilian public elementary education, particularly in the face of a shortage of qualified teachers and limited technological resources. To this end, we propose a generative artificial intelligence (AI) solution designed to assist public school teachers in creating lesson plans focused on computational thinking and technology. We developed a web-based system that automatically generates adaptable lesson plans through an intuitive interface, allowing educators from any subject area to create customized plans aligned with the BNCC by simply providing basic information such as grade level, class duration, and the subject for interdisciplinarity. Tests conducted with educators demonstrated the system’s usability and effectiveness, with positive feedback highlighting its ease of use and support for interdisciplinary planning. This research contributes to the broader discussion on AI in education, showcasing the potential of large language models (LLMs) in supporting teaching and learning.References
Baidoo-Anu, D. and Owusu Ansah, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1):52–62.
Bers, M. (2018). Coding as a Playground: Programming and Computational Thinking in the Early Childhood Classroom. Eye on Education book. Routledge.
Brasil (2022). Normas sobre Computação na Educação Básica – Complemento à Base Nacional Comum Curricular (BNCC). Disponível em: [link]. Acesso em: 24 abr. 2024.
Brasil (2023). Política Nacional de Educação Digital. [link]. [Accessed 22-10-2024].
Brasil. Ministério da Educação (2022). Parecer do Conselho Nacional de Educação (CNE)/Câmara de Educação Básica (CEB) n° 2/2022: Normas sobre Computação na Educação Básica - Complemento à Base Nacional Comum Curricular. Brasília: MEC. Conselho Nacional de Educação / Câmara de Educação Básica.
Carvalho, J. (2023). 84 [link]. [Accessed 22-10-2024].
(Cetic.br) (2023). TIC Educação — cetic.br. [link]. [Accessed 22-10-2024].
Chen, C. (2023). AI Will Transform Teaching and Learning. Let’s Get it Right. — hai.stanford.edu. [link]. [Accessed 22-10-2024].
de Souza, F., Ricieri, D., Barreto, R., and Farias, A. (2023). Anais do iv cobicet -trabalho completo congresso brasileiro interdisciplinar em ciência e tecnologiaa simulaÇÃo de diÁlogos e personagens no chat-gpt4: AnÁlise comparativa do desempenho em idiomas inglÊs e portuguÊs.
Hashem, R., Ali, N., Zein, F., Fidalgo, P., and Abu Khurma, O. (2023). Ai to the rescue: Exploring the potential of chatgpt as a teacher ally for workload relief and burnout prevention. Research and Practice in Technology Enhanced Learning, 19:023.
Karaman, M. R. et al. (2024). Are lesson plans created by chatgpt more effective? an experimental study. International Journal of Technology in Education, 7(1):107–127.
Liu, R., Zenke, C., Liu, C., Holmes, A., Thornton, P., and Malan, D. J. (2024). Teaching cs50 with ai: Leveraging generative artificial intelligence in computer science education. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2024, page 750–756, New York, NY, USA. Association for Computing Machinery.
Moundridou, M., Matzakos, N., and Doukakis, S. (2024). Generative ai tools as educators’ assistants: Designing and implementing inquiry-based lesson plans. Computers and Education: Artificial Intelligence, 7:100277.
Nernere, R. P. and Kastuhandani, F. C. (2024). In-service english teacher’s lived experience in using chatgpt in teaching preparation. SALEE: Study of Applied Linguistics and English Education, 5(1):227–243.
OpenAI (2023a). Does ChatGPT Tell the Truth? Disponível em: [link]. Acesso em: 24 abr. 2024.
OpenAI (2023b). Teaching with AI. Disponível em: [link]. Acesso em: 24 abr. 2024.
Tran, M. (2023). Prompt engineering for large language models to support k-8 computer science teachers in creating culturally responsive projects. In Proceedings of the 2023 ACM Conference on International Computing Education Research - Volume 2, ICER ’23, page 110–112, New York, NY, USA. Association for Computing Machinery.
Wing, J. M. (2006). Computational thinking. Commun. ACM, 49(3):33–35.
Bers, M. (2018). Coding as a Playground: Programming and Computational Thinking in the Early Childhood Classroom. Eye on Education book. Routledge.
Brasil (2022). Normas sobre Computação na Educação Básica – Complemento à Base Nacional Comum Curricular (BNCC). Disponível em: [link]. Acesso em: 24 abr. 2024.
Brasil (2023). Política Nacional de Educação Digital. [link]. [Accessed 22-10-2024].
Brasil. Ministério da Educação (2022). Parecer do Conselho Nacional de Educação (CNE)/Câmara de Educação Básica (CEB) n° 2/2022: Normas sobre Computação na Educação Básica - Complemento à Base Nacional Comum Curricular. Brasília: MEC. Conselho Nacional de Educação / Câmara de Educação Básica.
Carvalho, J. (2023). 84 [link]. [Accessed 22-10-2024].
(Cetic.br) (2023). TIC Educação — cetic.br. [link]. [Accessed 22-10-2024].
Chen, C. (2023). AI Will Transform Teaching and Learning. Let’s Get it Right. — hai.stanford.edu. [link]. [Accessed 22-10-2024].
de Souza, F., Ricieri, D., Barreto, R., and Farias, A. (2023). Anais do iv cobicet -trabalho completo congresso brasileiro interdisciplinar em ciência e tecnologiaa simulaÇÃo de diÁlogos e personagens no chat-gpt4: AnÁlise comparativa do desempenho em idiomas inglÊs e portuguÊs.
Hashem, R., Ali, N., Zein, F., Fidalgo, P., and Abu Khurma, O. (2023). Ai to the rescue: Exploring the potential of chatgpt as a teacher ally for workload relief and burnout prevention. Research and Practice in Technology Enhanced Learning, 19:023.
Karaman, M. R. et al. (2024). Are lesson plans created by chatgpt more effective? an experimental study. International Journal of Technology in Education, 7(1):107–127.
Liu, R., Zenke, C., Liu, C., Holmes, A., Thornton, P., and Malan, D. J. (2024). Teaching cs50 with ai: Leveraging generative artificial intelligence in computer science education. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2024, page 750–756, New York, NY, USA. Association for Computing Machinery.
Moundridou, M., Matzakos, N., and Doukakis, S. (2024). Generative ai tools as educators’ assistants: Designing and implementing inquiry-based lesson plans. Computers and Education: Artificial Intelligence, 7:100277.
Nernere, R. P. and Kastuhandani, F. C. (2024). In-service english teacher’s lived experience in using chatgpt in teaching preparation. SALEE: Study of Applied Linguistics and English Education, 5(1):227–243.
OpenAI (2023a). Does ChatGPT Tell the Truth? Disponível em: [link]. Acesso em: 24 abr. 2024.
OpenAI (2023b). Teaching with AI. Disponível em: [link]. Acesso em: 24 abr. 2024.
Tran, M. (2023). Prompt engineering for large language models to support k-8 computer science teachers in creating culturally responsive projects. In Proceedings of the 2023 ACM Conference on International Computing Education Research - Volume 2, ICER ’23, page 110–112, New York, NY, USA. Association for Computing Machinery.
Wing, J. M. (2006). Computational thinking. Commun. ACM, 49(3):33–35.
Published
2025-07-20
How to Cite
LARANJEIRA, Maria Luiza; BEZERRA, Pamela T. L..
Automatic Lesson Plan Generator on Technology Based on LLMs. In: WORKSHOP ON COMPUTING EDUCATION (WEI), 33. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 515-526.
ISSN 2595-6175.
DOI: https://doi.org/10.5753/wei.2025.8305.
