Analyzing the influence of demographic attributes on student performance in an introduction to programming discipline
Abstract
The low student performance in CS0 courses is a common scenario in undergraduate programs in science and engineering. External factors to the academic environment are as decisive in relation of these students results as the inherent aspects of the learning process. Based on the application of educational data mining techniques on the data of a Brazilian higher education institution, the student performance in a CS0 course for non-majors was observed to be correlated to previous socioeconomic and educational characteristics or to a subset created from the combination of these attributes. In its turn, the early identification of students at risk of failure can help to mitigate dropout in CS0 course.
References
Ahadi, A., Lister, R. e Vihavainen, A. (2016) “On the Number of Attempts Students Made on Some Online Programming Exercises During Semester and Their Subsequent Performance on Final Exam Questions.” Pp. 218–23 in Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education , ITiCSE ’16 . New York, NY, USA: ACM.
Bosse, Y. e Gerosa, M. A. (2015) “Reprovações e Trancamentos nas Disciplinas de Introdução à Programação da Universidade de São Paulo: Um Estudo Preliminar”. In XXIII Workshop sobre Educação em Computação (WEI). Recife.
Byrne, P. e Lyons, G. (2001). “The effect of student attributes on success in programming”. In ACM SIGCSE Bulletin, volume 33, pages 49–52. ACM.
Carvalho, L., Oliveira, D. e Gadelha, B. (2016) “Juiz online como ferramenta de apoio a uma metodologia de ensino híbrido em programação.” In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação (SBIE).
Hagan, D. e Markham, S. (2000) “Does it help to have some programming experience before beginning a computing degree program?” ACM SIGCSE Bulletin, 32(3):25–28.
Farag, W., Sanwar, A. e Debzani, D. (2013) “Does Language Choice Influence the Effectiveness of Online Introductory Programming Courses?” Pp. 165–70 in Proceedings of the 14th Annual ACM SIGITE Conference on Information Technology Education, SIGITE ’13. New York, NY, USA: ACM.
Júnior, J., Noronha, R. e Kaestner, C. (2017) “Método de Seleção de Atributos Aplicados na Previsão da Evasão de Cursos de Graduação”. Revista de Informática Aplicada, Volume 13, Número 2.
Khosravi, H. e Cooper, K. (2017) “Using Learning Analytics to Investigate Patterns of Performance and Engagement in Large Classes” . In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. New York, NY, USA: ACM
Leinonen, J., Longi, K, Klami, A. e Vihavainen, A. (2016) “Automatic Inference of Programming Performance and Experience from Typing Patterns.” Pp. 132–37 inProceedings of the 47th ACM Technical Symposium on Computing Science Education, SIGCSE ’16. New York, NY, USA: ACM.
Martins, L., Lopes, D. e Raabe A. (2012) “Um Assistente de Predição de Evasão Aplicado a Uma Disciplina Introdutória do Curso de Ciência da Computação.” Anais do Simpósio Brasileiro de Informática na Educação 23(1):26–30.
Pascoal, T., Brito, D. e Rêgo, T. (2015) “Uma abordagem para a previsão de Aplicado a uma Disciplina Introdutória do Curso de Ciência da Computação.” Anais do Simpósio Brasileiro de Informática na Educação 23(1):26–30.
Wasik, S., Antczak, M., Laskowski, A. e Sternal, T. (2018) “A Survey on Online Judge Systems and Their Applications”. ACM Computing Surveys, 51(1), 3.
