Avaliação de Ferramentas de Apoio ao Ensino de Técnicas de Mineração de Dados em Cursos de Graduação

  • José Viterbo UFF
  • Clodis Boscarioli UNIOESTE
  • Flavia Cristina Bernardini UFF
  • Mateus Felipe Teixeira UNIOESTE

Abstract


The labor market requires more and more professionals with analytical sense to handle large data sets to produce useful knowledge for decision making. The data mining process (DM) is among the key concepts of knowledge discovery and involves the use of different machine learning algorithms applied to extract new standards in databases, commonly supported by tools that implement these different algorithms. The use of DM tools by undergraduate students is essential for them to acquire practical experience. It is done in courses such as Artificial Intelligence, Data Mining or other, addressing machine learning techniques. This study evaluates different tools used in DM teaching, in order to offer teachers a guide in the selection and use of these tools from the point of view of usability, measured by undergraduate students in the discovery and understanding of associated knowledge.

References

BOSCARIOLI, C.; VITERBO, J.; TEIXEIRA, M. F.; ROHSIG, V. Analyzing HCI Issues in Data Clustering Tools. (2014) In: Proceedings of the 16th International Conference on Human-Computer Interaction. London: Springer, v. 8521. p. 22-33.

BRETERNITZ, V. J.; SILVA, L. A. “Big Data: Um Novo Conceito Gerando Oportunidades e Desafios” (2013), Revista Eletrônica de Tecnologia e Cultura – RETC. 13ª Ed., FATEC, ISSN: 2177-0425, p. 106-113.

CANVAS. Orange Canvas: Data Mining – Fruitful and Fun. (2013). Disponível em http://orange.biolab.si/. Acessado em 05 de março de 2016.

CHAWLA, N.V. Teaching Data Mining by Coalescing Theory and Applications. In: Proc. 35th ASEE/IEEE Frontiers in Education Conference.

FERREIRA, P. C.; BERNARDINI, F. C.; SILVA, C. R. C.; VITERBO, J. How Computer Science Undergraduate Programs in Brazilian Public Universities Address Artificial Intelligence and its Topics: A Preliminary Report (2012). Learning and Nonlinear Models, v. 12, pp. 73-85.

HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P.; WITTEN, I. H. The WEKA Data Mining Software: An Update (2009); SIGKDD Explorations, Volume 11, Issue 1.

JAFAR, J. M. A Tools-Based Approach to Teaching Data Mining Methods (2010). Journal of Information Technology Education: Innovations in Practice. Beachboard, J (Editor). Volume 9, p. 1-24.

KING, B.R.; SATYANARAYANA, A. Teaching Data Mining in The Era of Big Data (2013). In: Proc. 120th ASEE Annual Conference & Exposition.

KNIME. Knime: Open for Innovation (2013). Disponível em https://www.knime.org/. Acessado em 29 de maio de 2015.

MANASEER, S. A.; MALIBARI, A. Improve Teaching Method of Data Mining Course (2012). I. J. Modern Education and Computer Science, Volume 2, p. 15-22.

RAPIDMINER. Rapidminer: Analytics for Anyon (2013). Disponível em https://rapidminer.com/. Acessado em 08 de março de 2016.

REZENDE, R. O.; PUGLIESI, J. B.; MELANDA, E. A.; DE PAULA, M. F. (2005). Mineração de Dados. Cap 12. In: REZENDE, S. O. (Org.). Sistemas Inteligentes: Fundamentos e Aplicações. Barueri-SP: Ed. Manole, p. 307-335.

SATYANARAYANA, A. Software Tools for Teaching Undergraduate Data Mining Course (2013). In: Proc. ASEE MidAtlantic Conference.

WHARTON, C., RIEMAN, J., LEWIS, C., and POISON, P. The cognitive walkthrough method: A practitioner's guide (1994).

WITTEN, I.; FRANK, E.; HALL, M. Data Mining: Practical Machine Learning Tools and Techniques (2011). Morgan Kaufmann Publishers.
Published
2016-07-04
VITERBO, José; BOSCARIOLI, Clodis; BERNARDINI, Flavia Cristina; TEIXEIRA, Mateus Felipe. Avaliação de Ferramentas de Apoio ao Ensino de Técnicas de Mineração de Dados em Cursos de Graduação. In: WORKSHOP ON COMPUTING EDUCATION (WEI), 24. , 2016, Porto Alegre. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2016 . p. 2006-2015. ISSN 2595-6175. DOI: https://doi.org/10.5753/wei.2016.9644.