Analyzing Federated Learning Performance in Distributed Edge Scenarios

  • Fernando Remde UFRGS
  • Juliano Wickboldt UFRGS

Resumo


Federated Learning is a machine learning paradigm where many clients cooperatively train a single centralized model while keeping their data private and decentralized. This novel paradigm imposes many challenges, such as dealing with data that is not independent and identically distributed, spread among multiple clients that are not synchronized and may have limited computing power. These clients are often edge devices such as smartphones and sensors, which form a system that is heterogeneous, highly distributed by nature and difficult to manage. This work proposes an architecture for running federated learning experiments in a distributed edge-like environment. Based on this architecture, a set of experiments are conducted to analyze how the overall system performance is affected by different configuration parameters and varied number of connected clients.

Referências

Barthélemy, J., Verstaevel, N., Forehead, H., and Perez, P. (2019). Edge-computing video analytics for real-time traffic monitoring in a smart city. Sensors, 19(9).

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., de Gusmão, P. P. B., and Lane, N. D. (2021). Flower: A friendly federated learning research framework.

Cisco (2020). Cisco annual internet report (2018-2023) white paper. [link]. (accessed October 16th, 2021).

Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., and Zomaya, A. Y. (2020). Edge intelligence: The confluence of edge computing and artificial intelligence. IEEE Internet of Things Journal, 7(8):7457-7469.

Google (2017). Federated learning: Collaborative machine learning without centralized training data. [link] (accessed November 2nd, 2021).

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang, X., Vepakomma, P., Singh, A., Qiu, H., Zhu, X., Wang, J., Shen, L., Zhao, P., Kang, Y., Liu, Y., Raskar, R., Yang, Q., Annavaram, M., and Avestimehr, S. (2020). Fedml: A research library and benchmark for federated machine learning.

Ji, S., Pan, S., Long, G., Li, X., Jiang, J., and Huang, Z. (2019). Learning private neural language modeling with attentive aggregation. 2019 International Joint Conference on Neural Networks (IJCNN).

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D'Oliveira, R. G. L., Eichner, H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konecny, J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., ózgúr, A., Pagh, R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramér, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. (2021). Advances and open problems in federated learning.

Konecny, J., McMahan, H. B., Ramage, D., and Richtárik, P. (2016). Federated optimization: Distributed machine learning for on-device intelligence. Technical report, Google, Inc.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. Technical report, University of Toronto.

Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., and Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8):1697-1716.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2016). Communication-efficient learning of deep networks from decentralized data. Technical report, Google, Inc.

Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., and Jirstrand, M. (2018). A performance evaluation of federated learning algorithms. DIDL '18: Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, pages 1-8.

Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H. R., Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A., Maier-Hein, K., and et al. (2020). The future of digital health with federated learning. npj Digital Medicine, 3(1).

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., and Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8):1738-1762.
Publicado
23/05/2022
REMDE, Fernando; WICKBOLDT, Juliano. Analyzing Federated Learning Performance in Distributed Edge Scenarios. In: WORKSHOP DE GERÊNCIA E OPERAÇÃO DE REDES E SERVIÇOS (WGRS), 27. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 155-168. ISSN 2595-2722. DOI: https://doi.org/10.5753/wgrs.2022.223574.