Predição de Desempenho de Rede Resiliente a Falhas de Medição

  • Maria C. M. M. Ferreira UECE
  • Silvio E. S. B. Ribeiro UECE
  • Francisco V. J. Nobre UECE
  • Maria L. Linhares UECE
  • Thelmo P. Araújo UECE
  • Rafael L. Gomes UECE

Resumo


Serviços de monitoramento de rede são executados por diversas empresas e Provedores de Internet (ISP), que fornecem resultados de testes regulares de desempenho, tais como vazão, perda, atraso, dentre outros. Estas medições auxiliam a conhecer o comportamento da rede, bem como obter informações para um planejamento estratégico. Contudo, durante a realização das medições previstas durante o monitoramento da rede podem ocorrer falhas, as quais dificultam a execução de atividades mais complexas, tal como predição do desempenho de rede. Dentro deste contexto, este artigo apresenta um modelo resiliente e adaptativo para a predição de desempenho da rede, no qual inclui a identificação das falhas de medição, aplicando técnicas de imputação de dados a fim de adequar os dados para o processo de predição (baseado em Redes Neurais e Análise de Séries Temporais). Os experimentos realizados, usando dados reais da Rede Nacional de Ensino e Pesquisa (RNP), mostram que a solução proposta consegue atingir altos níveis de acurácia na predição com dados imputados, bem como supera outras abordagens de predição existentes.

Referências

Costa, W. L., Portela, A. L., and Gomes, R. L. (2021). Features-aware ddos detection in heterogeneous smart environments based on fog and cloud computing. International Journal of Communication Networks and Information Security, 13(3):491–498.

da Silva, G., Oliveira, D., Gomes, R. L., Bittencourt, L. F., and Madeira, E. R. M. (2020). Reliable network slices based on elastic network resource demand. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, pages 1–9.

Damaskinos, G., Guerraoui, R., Kermarrec, A.-M., Nitu, V., Patra, R., and Taiani, F. (2022). Fleet: Online federated learning via staleness awareness and performance prediction. ACM Trans. Intell. Syst. Technol., 13(5).

Ding, Z., Mei, G., Cuomo, S., Li, Y., and Xu, N. (2020). Comparison of estimating missing values in iot time series data using different interpolation algorithms. International Journal of Parallel Programming, 48(3):534–548.

França, C. M., Couto, R. S., and Velloso, P. B. (2021). Missing data imputation in internet of things gateways. Information, 12(10).

Gomes, R., Bittencourt, L., Madeira, E., Cerqueira, E., and Gerla, M. (2017). Management of virtual network resources for multimedia applications. Multimedia Systems, 23(4):405–419.

Gomes, R. L., Bittencourt, L. F., Madeira, E. R., Cerqueira, E., and Gerla, M. (2016). A combined energy-bandwidth approach to allocate resilient virtual software defined networks. Journal of Network and Computer Applications, 69:98–106.

Gomes, R. L., Bittencourt, L. F., and Madeira, E. R. M. (2020). Reliability-aware network slicing in elastic demand scenarios. IEEE Communications Magazine, 58(10):29–34.

Kanaya, T., Tabata, N., and Yamaguchi, S. (2020). A study on performance of cubic tcp and tcp bbr in 5g environment. In 2020 IEEE 3rd 5G World Forum (5GWF), pages 508–513.

Lara-Benítez, P., Carranza-García, M., and Riquelme, J. C. (2021). An experimental review on deep learning architectures for time series forecasting. International Journal of Neural Systems, 31(03):2130001. PMID: 33588711.

Liang, W., Li, Y., Xu, J., Qin, Z., Zhang, D., and Li, K.-C. (2023). Qos prediction and adversarial attack protection for distributed services under dlaas. IEEE Transactions on Computers, pages 1–1.

Miyazawa, K., Yamaguchi, S., and Kobayashi, A. (2020). Mechanism of cyclic performance fluctuation of tcp bbr and cubic tcp communications. In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pages 1139–1144.

Mok, R. K. P., Zou, H., Yang, R., Koch, T., Katz-Bassett, E., and Claffy, K. C. (2021). Measuring the network performance of google cloud platform. In Proceedings of the 21st ACM Internet Measurement Conference, IMC ’21, page 54–61, New York, NY, USA. Association for Computing Machinery.

Moreira, D. A., Marques, H. P., Costa, W. L., Celestino, J., Gomes, R. L., and Nogueira, M. (2021). Anomaly detection in smart environments using ai over fog and cloud computing. In 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), pages 1–2. IEEE.

Naf, J., Spohn, M.-L., Michel, L., and Meinshausen, N. (2022). Imputation scores.

Park, J., Müller, J., Arora, B., Faybishenko, B., Pastorello, G., Varadharajan, C., Sahu, R., and Agarwal, D. (2023). Long-term missing value imputation for time series data using deep neural networks. Neural Computing and Applications, 35(12):9071–9091.

Portela, A. L., Menezes, R. A., Costa, W. L., Silveira, M. M., Bittecnourt, L. F., and Gomes, R. L. (2023). Detection of iot devices and network anomalies based on anonymized network traffic. In NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, pages 1–6.

Portela, A. L. C., Ribeiro, S. E. S. B., Menezes, R. A., de Araujo, T., and Gomes, R. L. (2024). T-for: An adaptable forecasting model for throughput performance. IEEE Transactions on Network and Service Management, pages 1–1.

Rafi, S. H., Nahid-Al-Masood, Deeba, S. R., and Hossain, E. (2021). A short-term load forecasting method using integrated cnn and lstm network. IEEE Access, 9:32436–32448.

Ribeiro, S., Menezes, R., Portela, A., Araújo, T., and Gomes, R. (2023). Aplicando redes neurais e análise temporal para predição adaptativa de desempenho de rede. In Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 490–503, Porto Alegre, RS, Brasil. SBC.

Saad, M., Chaudhary, M., Karray, F., and Gaudet, V. (2020). Machine learning based approaches for imputation in time series data and their impact on forecasting. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 2621–2627.

Silveira, M. M., Portela, A. L., Menezes, R. A., Souza, M. S., Silva, D. S., Mesquita, M. C., and Gomes, R. L. (2023). Data protection based on searchable encryption and anonymization techniques. In NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, pages 1–5.

Tawn, R., Browell, J., and Dinwoodie, I. (2020). Missing data in wind farm time series: Properties and effect on forecasts. Electric Power Systems Research, 189:106640.

Thakur, S., Choudhary, J., and Singh, D. P. (2021). A survey on missing values handling methods for time series data. In Sheth, A., Sinhal, A., Shrivastava, A., and Pandey, A. K., editors, Intelligent Systems, pages 435–443, Singapore. Springer Singapore.

Vasileva, P., McKee, S., Penev, A., and Vukotic, I. (2021). Ps-dash –analysis, monitoring and visualization of network measurements. In 2021 International Conference Automatics and Informatics (ICAI), pages 93–96.

Wu, S.-F., Chang, C.-Y., and Lee, S.-J. (2015). Time series forecasting with missing values. In 2015 1st International Conference on Industrial Networks and Intelligent Systems (INISCom), pages 151–156.

Yang, H., Li, X., Qiang, W., Zhao, Y., Zhang, W., and Tang, C. (2021). A network traffic forecasting method based on sa optimized arima–bp neural network. Computer Networks, 193:108102.
Publicado
24/05/2024
FERREIRA, Maria C. M. M.; RIBEIRO, Silvio E. S. B.; NOBRE, Francisco V. J.; LINHARES, Maria L.; ARAÚJO, Thelmo P.; GOMES, Rafael L.. Predição de Desempenho de Rede Resiliente a Falhas de Medição. In: WORKSHOP DE GERÊNCIA E OPERAÇÃO DE REDES E SERVIÇOS (WGRS), 29. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 29-42. ISSN 2595-2722. DOI: https://doi.org/10.5753/wgrs.2024.2893.