Data Journalism: Digital Transformation in News Production

  • Henrique Bilo UFRGS
  • Rafael Oleques Nunes UFRGS
  • Daniel Matos de Castro UFRGS
  • Dante Augusto Couto Barone UFRGS

Abstract


This article aims to explore the use of data journalism as an emerging technique in the field of modern journalism. To do so, we present concrete examples of articles and newspapers that use this technique to collect, analyze, and visualize large sets of data. We highlight how data journalism allows for more accurate and factual reporting, while identifying patterns and trends in large amounts of information. We also emphasize the challenges that digital transformation presents for journalism, such as combating fake news, as well as opportunities for the production of more diverse and secure content. Finally, we conclude that this is a promising and essential area for modern journalism, contributing to greater accuracy and transparency in the information disseminated to society.

References

Aitamurto, T., Sirkkunen, E., and Lehtonen, P. (2011). Trends in data journalism. Espoo: VTT, pages 0–27.

Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia, H., Ji, Z., Yu, T., Chung, W., et al. (2023). A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023.

Bounegru, L. and Gray, J. (2021). The Data Journalism Handbook: Towards a Critical Data Practice. Amsterdam University Press.

Broussard, M., Diakopoulos, N., Guzman, A. L., Abebe, R., Dupagne, M., and Chuan, C.-H. (2019). Artificial intelligence and journalism. Journalism & Mass Communication Quarterly, 96(3):673–695.

Canavilhas, J. and Jorge, T. d. M. (2022). Fake news explosion in portugal and brazil the pandemic and journalistsrsquo; testimonies on disinformation. Journalism and Media, 3(1):52–65.

da Silva, R. N. M., Spritzer, A., and Freitas, C. D. S. (2018). Visualization of roll call data for supporting analyses of political profiles. In 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 150–157. IEEE.

Fink, K. and Anderson, C. W. (2015). Data journalism in the united states: Beyond the “usual suspects”. Journalism studies, 16(4):467–481.

Gray, J., Chambers, L., and Bounegru, L. (2012). The data journalism handbook: How journalists can use data to improve the news. ” O’Reilly Media, Inc.”.

Hammond, P. (2017). From computer-assisted to data-driven: Journalism and big data. Journalism, 18(4):408–424.

Oshikawa, R., Qian, J., and Wang, W. Y. (2018). A survey on natural language processing for fake news detection. arXiv preprint arXiv:1811.00770.

Pavlik, J. V. (2023). Collaborating with chatgpt: Considering the implications of generative artificial intelligence for journalism and media education. Journalism & Mass Communication Educator, page 10776958221149577.

Rubin, V. L., Chen, Y., and Conroy, N. K. (2015). Deception detection for news: three types of fakes. Proceedings of the Association for Information Science and Technology, 52(1):1–4.

Vicente, P. N. and Flores, A. M. M. (2021). Inteligência artificial e jornalismo. De que falamos quando dizemos Jornalismo?, pages 175–194.

Wang, F.-Y., Miao, Q., Li, X., Wang, X., and Lin, Y. (2023). What does chatgpt say: the dao from algorithmic intelligence to linguistic intelligence. IEEE/CAA Journal of Automatica Sinica, 10(3):575–579.
Published
2023-08-06
BILO, Henrique; NUNES, Rafael Oleques; CASTRO, Daniel Matos de; BARONE, Dante Augusto Couto. Data Journalism: Digital Transformation in News Production. In: WORKSHOP ON THE IMPLICATIONS OF COMPUTING IN SOCIETY (WICS), 4. , 2023, João Pessoa/PB. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 99-106. ISSN 2763-8707. DOI: https://doi.org/10.5753/wics.2023.229547.