Um Algoritmo de Seleção de Canais Verde para Redes de Rádios Cognitivos

  • Eduardo Vasconcelos UFPE
  • Kelvin Dias UFPE
  • Paulo Cunha UFPE

Resumo


Este artigo propõe um algoritmo para a seleção de canais energeticamente eficiente para redes de rádios cognitivos baseadas em contenção (IEEE 802.11af). Para isto, o algoritmo considera os requisitos das aplicações dos Usuários Secundários (US) e a capacidade do canal que é obtida através de um modelo ON/OFF estendido. Por meio de simulações utilizando-se redes de Petri mostrou-se que a proposta é superior em termos de eficiência energética às redes Wi-Fi atuais. Baseado no cenário utilizado, é possível obter uma economia de cerca de 281 kW por mês o que representa em um ano de operação uma redução de 619,91Kg de CO2 emitido na atmosfera.

Referências

Allard, A. And Fisher, N. Advanced Mathematical and Computational Tools in Metrology and Testing, World Scientific Publishing Company, pp. 1–6. 2009.

Akyildiz, I.F.; Won-Yeol Lee; Vuran, Mehmet C.; Mohanty, S., "A survey on spectrum management in cognitive radio networks," Communications Magazine, IEEE , vol.46, no.4, pp.40,48, April 2008.Amanna, A. et al. METRICS AND MEASUREMENT TECHNOLOGIES FOR GREEN COMMUNICATIONS, NIST Technology Inovation Program. March 2009.

Amanna, A. Green Communications: Annotated Literature Review and Research Vision, Technical Repost, 2010.

Aneel, Agencia Nacional de Energia Eletrica. [link] acessado em: 20/04/2013.

Barbuzzi, A.; Perala, P.H.J.; Boggia, G.; Pentikousis, K., "3GPP radio resource control in practice," Wireless Communications, IEEE , vol.19, no.6, pp.76,83, December 2012.

Bayhan, S.; Alagoz, F., "Scheduling in Centralized Cognitive Radio Networks for Energy Efficiency," Vehicular Technology, IEEE Transactions on , vol.62, no.2, pp.582,595, Feb. 2013.

Carbon Trust. Conversion factors. [link].

Cordeiro, C. et al, Cognitive PHY and MAC layers for dynamic spectrum access and sharing of TV bands, Proceeding TAPAS '06 Proceedings of the first international workshop on Technology and policy for accessing spectrum, New York, NY, USA, 2006.

CPN Tools. [link].

Dejonghe, A. Green Reconfigurable Radio Systems, IEEE Signal Processing Magazine, V. 24, Issue 3, PP 90 – 101, 2007.

El-Beaino, W.; El-Hajj, A.M.; Dawy, Z.; , "A proactive approach for LTE radio network planning with green considerations," Telecommunications (ICT), 2012 19th International Conference on, pp.1-5, 23-25 April 2012.

Fodor, G. and Kasmi, M. A. Discontinuous Transmission and Reception, US 8320271 B2, Nov. 2012.

Ghosh, C.; Roy, S.; Cavalcanti, D., "Coexistence challenges for heterogeneous cognitive wireless networks in TV white spaces," Wireless Communications, IEEE, vol.18, no.4, pp.22,31, August 2011.

Grace,D. et al. Using cognitive radio to deliver 'Green' communications, Cognitive Radio Oriented Wireless Networks and Communications, 2009. Hannover, Germany, PP 1 – 6, 2009.

Hasan, z. et al. Green Cellular Networks: A Survey, Some Research Issues and Challenges , Communications Surveys & Tutorials, IEEE, V. 13, Issue 4, PP 524 – 540, 2011.

Hayar, A. Some Issues on Cognitive Radio and UWB Technology Convergence for Enabling Green, Systems, Signal Processing and their Applications (WOSSPA), Tipaza, Algeria, PP 365 – 370, 2011.

Hoque, M.; Siekkinen, M.; Nurminen, J., "Energy Efficient Multimedia Streaming to Mobile Devices — A Survey," Communications Surveys & Tutorials, IEEE , vol.PP, no.99, pp.1,19, 2012.

Hou, F. And Huang, J. Dynamic Channel Selection in Cognitive Radio Network with Channel Heterogeneity, IEEE Global Communications Conference, Miame, USA, 2010.

IEEE. Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands. IEEE Computer Society, 2011.

IEEE P802.11af™/D1.02 Draft Standard for Information Technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 3: TV White Spaces OperationU.S.", June 2011.

Jardosh, P. A. et al. Green WLANs: On-Demand WLAN Infrastructures, Mobile Networks and Applications, Volume 14, Issue 6, pp. 798-814, Dec 2009.

LEKOMTCEV, D.; MARŠÁLEK, R. Comparison of 802.11af and 802.22 standards – physical layer and cognitive functionality, Elektronika a optoelektronika, elektrotechnika, N. 2, ISBN: 1213-1539, p. 12 – 18, 2012.

Li, C. And Li, C. Dynamic Channel Selection Algorithm for Cognitive Radios, Circuits and Systems for Communications, 2008. ICCSC 2008. Shanghai, China, p. 275 – 278, Jun 2008.

Lian, X. et al. Green Communications and Positioning by Integration of Adaptive and Distributed Beam-forming Technologies in Cognitive Radio Systems, Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology,chennai, India,2011.

Lorincz, Josip; Capone, Antonio; Bogarelli, Massimo; , "Energy savings in wireless access networks through optimized network management," Wireless Pervasive Computing (ISWPC), 2010 5th IEEE International Symposium on , vol., no., pp.449-454, 5-7 May 2010

Mahapatra, R. Energy consumption analysis in link adaptive cognitive radio network, Proceedings of the 3rd international conference on Advanced Networks and Telecommunication systems, Piscataway, USA, 2009.

Marsan, M. J. Modelling with Generalized Stochastic Petri Nets Wiley Series in Parallel Computing John Wiley and Sons, 1995.

Mitola, J. Cognitive Radio: Na integrated agent architeture for Software defined Radio, Ph. D. Dissertation, KTH Royal Intitute of Technology, Stockholm, Sweden, 2000.

Ross, S. Introductory Statistics. Elsevier Science. Third Edition, 2010.

Sangkyu Baek; Bong Dae Choi, "Performance analysis of power save mode in IEEE 802.11 infrastructure WLAN," Telecommunications, 2008. ICT 2008. International Conference on , vol., no., pp.1,4, 16-19 June 2008.

Song, Y. et al. Stochastic Channel Selection in Cognitive Radio Networks, IEEE Global Telecommunications Conference, Washington, USA, PP 4878 – 4882, 2007.

Stevenson, C.; Chouinard, G.; Zhongding Lei; Wendong Hu; Shellhammer, S.J.; Caldwell, W., "IEEE 802.22: The first cognitive radio wireless regional area network standard," Communications Magazine, IEEE , vol.47, no.1, pp.130,138, January 2009

Swarup, V.M.; Ribeiro, V.J.; Gupta, A., "A comparative study of scheduling schemes for cognitive radio networks: A quality of service perspective," Communication Systems and Networks (COMSNETS), 2013 Fifth International Conference on , vol., no., pp.1,6, 7-10 Jan. 2013

Vasconcelos, E. Dias, K. AND Cunha, P. Modelo e Análise de Disponibilidade para Acesso ao Meio baseado em Contenção em Redes de Rádio Cognitivo. XXXII Congresso da Sociedade Brasileira de Computação, XI WPerformance, Curitiba, Paraná, 2012.

Vo, Q. D. et al. Green Perspective Cognitive Radio-based M2M Communications for Smart Meters. Information and Communication Technology Convergence (ICTC), Jeju, South Korea, PP 382 – 383, 2010.Yucek, T.; Arslan, H., "A survey of spectrum sensing algorithms for cognitive radio applications," Communications Surveys & Tutorials, IEEE , vol.11, no.1, pp.116,130, First Quarter 2009.
Publicado
23/07/2013
VASCONCELOS, Eduardo; DIAS, Kelvin; CUNHA, Paulo. Um Algoritmo de Seleção de Canais Verde para Redes de Rádios Cognitivos. In: WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE COMUNICAÇÃO (WPERFORMANCE), 12. , 2013, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2013 . p. 970-983. ISSN 2595-6167.