Segmentação de Conexões TCP para a Transferência Fim-a-Fim em Alta Velocidade

  • Carlos Henrique Pereira Augusto UFRJ
  • MarcelWilliam Rocha da Silva UFRJ
  • Kleber Vieira Cardoso UFRJ
  • Andre Chaves Mendes UFRJ
  • Raphael Melo Guedes UFRJ
  • José Ferreira de Rezende UFRJ

Resumo


O desenvolvimento tecnológico na área de redes, principalmente na área de redes ópticas, contribui para que os enlaces das redes de backbone sejam cada vez mais velozes. Entretanto, a limitação do protocolo TCP para o transporte confiável de dados em enlaces de alta capacidade e alto retardo faz com que esses enlaces permaneçam subutilizados. Este trabalho apresenta uma nova implementação, utilizando sinalização HTTP, e uma avaliação analítica e experimental do conceito de logística aplicado em redes. A idéia de aplicar logística ao problema consiste na segmentação das conexões TCP em conexões encadeadas, onde os dados fluem como em um pipeline, visando minimizar a ineficiência no uso dos enlaces de backbone. As avaliações analítica e experimental comprovam os ganhos de desempenho da proposta. Além disso, o uso de sinalização HTTP facilita sua implementação e viabiliza sua adoção por usuários comuns utilizando clientes HTTP convencionais, como navegadores Web.

Referências

Altman, E., Avrachenkov, K., and Barakat, C. (2000). TCP in presence of bursty losses. Perform. Eval., 42(2-3):129–147.

Altman, E., Avrachenkov, K., and Barakat, C. (2005). A stochastic model of TCP/IP with stationary random losses. IEEE/ACM Trans. Netw., 13(2):356–369.

Altman, E., Barakat, C., Mascolo, S., and et al. (2006a). Analysis of TCP Westwood+ in high speed networks. In PFLDNet 2006 Workshop Proceedings.

Altman, E., Barman, D., Tuffin, B., and Vojnovic, M. (2006b). Parallel TCP Sockets: Simple Model, Throughput and Validation. In IEEE International Conference on Computer Communications (INFOCOM).

Brakmo, L. S., O’Malley, S. W., and Peterson, L. L. (1994). TCP Vegas: New Techniques for Congestion Detection and Avoidance. In SIGCOMM, pages 24–35.

D. Leith, R. S. (2004). H-TCP: TCP for high-speed and long-distance networks. In PFLDNet 2004 Workshop Proceedings.

da Silva, L. A. F. (2006). Análise de Desempenho de Protocolos de Transporte para Redes de Alta Velocidade. Master’s thesis, Programa de Pós-Graduação de Engenharia Elétrica - COPPE/UFRJ.

Floyd, S. (1991). Connections with multiple congested gateways in packet-switched networks part 1: one-way traffic. SIGCOMM Comput. Commun. Rev., 21(5):30–47.

Floyd, S. (1999). The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 2582.

Floyd, S. (2003). RFC 3649 - HighSpeed TCP for Large Congestion Windows. IETF Request for Comments.

Grossman, R. L., Mazzucco, M., Sivakumar, H., Pan, Y., and Zhang, Q. (2005). Simple Available Bandwidth Utilization Library for High-Speed Wide Area Networks. The Journal of Supercomputing, (34):231–242.

Gu, Y. and Grossman, R. L. (2003). Using UDP for Reliable Data Transfer over High Bandwidth-DelayProduct Networks. [link]. Visitado pela última vez em 25/02/2008.

Hacker, T. J., Noble, B. D., and Athey, B. D. (2002). The End-to-End Performance Effects of Parallel TCP Sockets on a Lossy Wide-Area Network. In International Parallel and Distributed Processing Symposium (IPDPS).

Hacker, T. J., Noble, B. D., and Athey, B. D. (2004). Improving Throughput and Maintaining Fairness using Parallel TCP. In IEEE International Conference on Computer Communications (INFOCOM).

Katabi, D., Handley, M., and Rohrs, C. (2002). Congestion control for high bandwidthdelay product networks. SIGCOMM Comput. Commun. Rev., 32(4):89–102.

Kelly, T. (2003). Scalable TCP: Improving Performance in Highspeed Wide Area Networks. SIGCOMM Comput. Commun. Rev., 33(2):83–91.

Kleeman, M. (2007). Point of Disconnect: Internet Traffic and the U.S. Communications Infrastructure. International Journal of Communication. Disponível em: [link].

Kumar, A. (1998). Comparative performance analysis of versions of TCP in a local network with a lossy link. IEEE/ACM Trans. Netw., 6(4):485–498.

Lakshman, T. V. and Madhow, U. (1997). The Performance of TCP/IP for Networks with High Bandwidth-Delay Products and Random Loss. IEEE/ACM Transactions on Networking.

Leith, D. and Shorten, R. (2005). H-TCP: TCP Congestion Control for High Bandwidth-Delay Products Paths. E-mail enviado para grupo TCPM do IETF.

Lim, S. B., , Fox, G., Kaplan, A., Pallickara, S., and Pierce, M. (2005). GridFTP and Parallel TCP Support in NaradaBrokering. In International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), volume 3719, pages 93–102.

Mathis, M., Semke, J., and Mahdavi, J. (1997). The macroscopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev., 27(3):67–82.

Misra, A., Ott, T., and Baras, J. (1999a). The window distribution of multiple TCPs with random loss queues. Global Telecommunications Conference. GLOBECOM’99, 3:1714–1726 vol.3.

Misra, V., Gong, W.-B., and Towsley, D. (1999b). Stochastic differential equation modeling and analysis of TCP-windowsize behavior. Technical report, Technical Report ECE-TR-CCS-99-10-01.

Netfilter (2008). The netfilter.org project. [link]. [Visitado pela última vez em 16/03/2008].

Padhye, J., Firoiu, V., Towsley, D. F., and Kurose, J. F. (2000). Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw., 8(2):133–145.

Savari, S. and Telatar, E. (1999). The behavior of certain stochastic processes arising in window protocols. Global Telecommunications Conference. GLOBECOM’99, 1B:791–795 vol. 1b.

Sivakumar, H., Bailey, S., and Grossman, R. L. (2000). Psockets: the case for application-level network striping for data intensive applications using high speed wide area networks. In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM), page 37, Washington, DC, USA. IEEE Computer Society.

Song, K. T. J., Zhang, Q., and Sridharan, M. (2006). Compound TCP: A scalable and TCP-Friendly congestion control for high-speed networks. In PFLDNet 2006 Workshop Proceedings.

Swany, D. M. and Wolski, R. (2001). Data Logistics in Network Computing: The Logistical Session Layer. In IEEE International Symposium on Network Computing and Applications, 2001, volume 2, pages 174–185.

Tuffin, B. and Maill, P. (2006). How Many Parallel TCP Sessions to Open: A Pricing Perspective. In International Workshop on Internet Charging and QoS Technology (ICQT).

V. Jacobson, R. B. (1988). RFC 1072 - TCP Extensions for Long-Delay Paths. IETF Request for Comments.

Xu, L., Harfoush, K., and Rhee, I. (2004). Binary Increase Congestion Control for Fast, Long Distance Networks. In Proceedings of IEEE INFOCOM ’04.

Xu, L. and Rhee, I. (2005). CUBIC: A New TCP-Friendly High-Speed TCP Variant. In Proceedings of PFLDnet 2005.
Publicado
12/07/2008
AUGUSTO, Carlos Henrique Pereira; SILVA, MarcelWilliam Rocha da; CARDOSO, Kleber Vieira; MENDES, Andre Chaves; GUEDES, Raphael Melo; REZENDE, José Ferreira de. Segmentação de Conexões TCP para a Transferência Fim-a-Fim em Alta Velocidade. In: WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE COMUNICAÇÃO (WPERFORMANCE), 7. , 2008, Belém/PA. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2008 . p. 141-160. ISSN 2595-6167.