Analytical Modeling Approach of Routing Deflection for Intra-domain Networks

  • Rodolfo R. Gomes IFES
  • Cristina K. Dominicini IFES
  • Alextian B. Liberato IFES
  • Moisés R. N. Ribeiro UFES
  • Magnos Martinello UFES

Resumo


This paper presents an analytical modeling to KAR (Key-for-Any-Route), an intra-domain resilient routing system in which edge-nodes set a route ID to select any existing route as an alternative to safely forward packets to their destination. KAR-enabled switches explore the existing routes by using special properties of Residue Number System as encoding and forwarding techniques. The encoding technique allows adding resilient forwarding paths to drive deflected packets (due to link failure) to their original destination so that loops are not formed. Three deflection methods are discussed along with their analytical models checked against numerical simulations. Results show that KAR efficiently allows deflected packets to automatically reach their destination.

Referências

Ding, C., Pei, D., and Salomaa, A. (1996). Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography. World Scientific Publishing Co., Inc., River Edge, NJ, USA.

Forghieri, F., Bononi, A., and R.Prucnal, P. (1995). Analysis and comparison of hotpotato and single-buffer deflection routing in very high bit rate optical mesh networks. IEEE Transactions on Communications.

Garner, H. L. (1959). The residue number system. Transactions on Electronic Computers, pages 140 – 147.

Lee, T., Pappas, C., Basescu, C., Han, J., Hoefler, T., and Perrig, A. (2015). Source-based path selection: The data plane perspective. In The 10th International Conference on Future Internet, CFI ’15, pages 41–45, New York, NY, USA. ACM.

Li, A., Yang, X., and Wetherall, D. (2009). Safeguard: safe forwarding during route changes. In Proceedings of the 5th international conference on Emerging networking experiments and technologies, CoNEXT ’09, pages 301–312, New York, NY, USA. ACM.

Martinello, M., Ribeiro, M., de Oliveira, R., and de Angelis Vitoi, R. (2014). Keyflow: a prototype for evolving sdn toward core network fabrics. Network, IEEE, 28(2):12–19.

Motiwala, M., Elmore, M., Feamster, N., and Vempala, S. (2008). Path splicing. SIGCOMM Comput. Commun. Rev., 38(4):27–38.

Nguyen, G. T., Agarwal, R., Liu, J., Caesar, M., Godfrey, P. B., and Shenker, S. (2011). Slick packets. SIGMETRICS Perform. Eval. Rev., 39(1):205–216.

Ramos, R. M., Martinello, M., and Rothenberg, C. E. (2013). Slickflow: Resilient source routing in data center networks unlocked by openflow. IEEE Conference on Local Computer Networks, pages 01–08.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., and Demeester, P. (2012). A Demonstration of Fast Failure Recovery in Software Defined Networking. TRIDENTCOM 2012, pages 411–414.

Swallow, G., Pan, P., and Atlas, A. (2005). RSVP-TE fast reroute. RFC 4090, http://www.ietf.org/rfc/rfc4090.txt.

Yang, X. and Wetherall, D. (2006). Source selectable path diversity via routing deflections. SIGCOMM Comput. Commun. Rev., 36(4):159–170.
Publicado
04/07/2016
GOMES, Rodolfo R.; DOMINICINI, Cristina K.; LIBERATO, Alextian B.; RIBEIRO, Moisés R. N.; MARTINELLO, Magnos. Analytical Modeling Approach of Routing Deflection for Intra-domain Networks. In: WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE COMUNICAÇÃO (WPERFORMANCE), 15. , 2016, Porto Alegre. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2016 . p. 2839-2850. ISSN 2595-6167. DOI: https://doi.org/10.5753/wperformance.2016.9730.