Desafios e Oportunidades rumo à Internet Quântica
Abstract
To exchange data over long distances, networks built on heterogeneous technologies and managed by independent organizations, methods that allow quantum protocols to transparently connect to the underlying hardware implementations are required. However, quantum signals are fragile and cannot be copied or amplified. Until today, just some preliminary versions of network stacks for a quantum internet have been proposed, and only a few basic elements have been suggested. To fully realize the potentials of quantum communication, new challenges and open issues need to be addressed. This paper presents key challenges to enabling a quantum Internet and discusses possible alternatives that are being developed.
References
Barnum, H., Barrett, J., Leifer, M., and Wilce, A. (2007). Generalized no-broadcasting theorem. Physical Review Letters, 99(24).
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Physical review letters, 70(13):1895.
Cacciapuoti, A. S., Caleffi, M., Tafuri, F., Cataliotti, F. S., Gherardini, S., and Bianchi, G. (2020). Quantum internet: Networking challenges in distributed quantum computing. IEEE Network, 34(1):137–143.
Caleffi, M. and Cacciapuoti, A. S. (2020). Quantum switch for the quantum internet: Noiseless communications through noisy channels. IEEE Journal on Selected Areas in Communications, pages 1–1.
Chandra, D., Babar, Z., Nguyen, H. V., Alanis, D., Botsinis, P., Ng, S. X., and Hanzo, L. (2018). Quantum topological error correction codes: The classical-to-quantum isomorphism perspective. IEEE Access, 6:13729–13757.
Chen, X., Cheng, B., Li, Z., Nie, X., Yu, N., Yung, M.-H., and Peng, X. (2018). Experimental cryptographic verification for near-term quantum cloud computing.
Ekert, A. K. (1991). Quantum cryptography based on bell’s theorem. Phys. Rev. Lett., 67:661–663.
European Alliance, Q. I. (2020). Quantum internet alliance.
Gottesman, D., Jennewein, T., and Croke, S. (2012). Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett., 109:070503.
Humble, T. S., Sadlier, R. J., Williams, B. P., and Prout, R. C. (2018). Software-defined quantum network switching. In Disruptive Technologies in Information Sciences, volume 10652, pages 72–79. SPIE.
Kimble, H. J. (2008). The quantum internet. Nature, 453(7198):1023–1030.
Kómár, P., Kessler, E. M., Bishof, M., Jiang, L., Sørensen, A. S., Ye, J., and Lukin, M. D. (2014). A quantum network of clocks. Nature Physics, 10(8):582–587.
Kozlowski, W., Kuipers, F., and Wehner, S. (2020). A p4 data plane for the quantum internet. Proceedings of the 3rd P4 Workshop in Europe.
Kumar, S., Lauk, N., and Simon, C. (2019). Towards long-distance quantum networks with superconducting processors and optical links. Quantum Science and Technology, 4(4):045003.
Ndousse-Fetter, T., Peters, N., Grice, W., Kumar, P., Chapuran, T., Guha, S., Hamilton, S., Monga, I., Newell, R., Nomerotski, A., Towsley, D., and Yoo, B. (2019). Quantum networks for open science.
Nielsen, Michael A.and Chuang, I. (2010). Quantum computation and quantum information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA.
S. Wehner, D. E. and Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(1):303.
U. S. Quantum, National Office, U. S. G. (2020). A strategic vision for america’s quantum networks.
