Uma Proposta para a Porta Toffoli usando QND para Qubits baseados em Polarização e suas Aplicações
Resumo
Um aparato óptico para implementar a porta Toffoli é apresentado para qubits baseados em polarização usando medição quântica não demolidora (QND) com uma probabilidade de sucesso de 0,95 (19/20) usando dispositivos ópticos reais. A partir deste aparato é possível implementar portas universais para computação quântica e clássica reversível.Referências
Aharonov, Dorit. “A Simple Proof that Toffoli and Hadamard are Quantum Universal”, arXiv:quant-ph/0301040, (2003-01-09).
Barenco, A. et al. “Elementary gates for quantum computation”, Phys. Rev. A 52, 3457–3467 (1995).
Cory, D. G. et al. “Experimental quantum error correction”, Phys. Rev. Lett. 81, 2152– 2155 (1998).
Fedorov, A., Steffen, L., Baur, M. et al. “Implementation of a Toffoli gate with superconducting circuits”, Nature 481, 170–172 (2012).
Gottesman D., “Theory of fault-tolerant quantum computation”, Phys. Rev. A 57, 127, (1998).
Lanyon, B. P. et al. “Simplifying quantum logic using higher-dimensional Hilbert spaces”, Nature Phys. 5, 134–140 (2009).
Nielsen, M. A. and Chuang, I. L., “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, U.K., 2002.
Mariantoni, M., et al, “Implementing the quantum von Neumann architecture with superconducting circuits”, Science 334, 61–65 (2011).
Monz, T. et al, “Realization of the quantum Toffoli gate with trapped ions”, Phys. Rev. Lett. 102, 040501 (2009).
Grangier, P., Levenson, J. A. and Poizat, JP., “Quantum non-demolition measurements in optics”, Nature, 396, 537, 1998.
Kok, P., Lee, H. and Dowling, J. P., “Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements”, Phys. Rev. A, 66, 063814, 2002.
Toffoli T., “Reversible Computing Automata”, Languages and Programming (Lecture Notes in Computer Science vol 85) ed. J. W. de Bakker and J. van Leeuwen (Berlin: Springer), 1980, pp 632–44.
Lin, Q. and Li, J., “Quantum control gates with weak cross-Kerr nonlinearity”, Phys. Rev. A 79, 022301 – Published 2 February 2009.
Barenco, A. et al. “Elementary gates for quantum computation”, Phys. Rev. A 52, 3457–3467 (1995).
Cory, D. G. et al. “Experimental quantum error correction”, Phys. Rev. Lett. 81, 2152– 2155 (1998).
Fedorov, A., Steffen, L., Baur, M. et al. “Implementation of a Toffoli gate with superconducting circuits”, Nature 481, 170–172 (2012).
Gottesman D., “Theory of fault-tolerant quantum computation”, Phys. Rev. A 57, 127, (1998).
Lanyon, B. P. et al. “Simplifying quantum logic using higher-dimensional Hilbert spaces”, Nature Phys. 5, 134–140 (2009).
Nielsen, M. A. and Chuang, I. L., “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, U.K., 2002.
Mariantoni, M., et al, “Implementing the quantum von Neumann architecture with superconducting circuits”, Science 334, 61–65 (2011).
Monz, T. et al, “Realization of the quantum Toffoli gate with trapped ions”, Phys. Rev. Lett. 102, 040501 (2009).
Grangier, P., Levenson, J. A. and Poizat, JP., “Quantum non-demolition measurements in optics”, Nature, 396, 537, 1998.
Kok, P., Lee, H. and Dowling, J. P., “Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements”, Phys. Rev. A, 66, 063814, 2002.
Toffoli T., “Reversible Computing Automata”, Languages and Programming (Lecture Notes in Computer Science vol 85) ed. J. W. de Bakker and J. van Leeuwen (Berlin: Springer), 1980, pp 632–44.
Lin, Q. and Li, J., “Quantum control gates with weak cross-Kerr nonlinearity”, Phys. Rev. A 79, 022301 – Published 2 February 2009.
Publicado
16/08/2021
Como Citar
POLICARPO, Samy C.; SILVA, João Batista R..
Uma Proposta para a Porta Toffoli usando QND para Qubits baseados em Polarização e suas Aplicações . In: WORKSHOP DE COMUNICAÇÃO E COMPUTAÇÃO QUÂNTICA (WQUANTUM), 1. , 2021, Uberlândia.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 43-47.
DOI: https://doi.org/10.5753/wquantum.2021.17226.