Demonstration of a Polarization-encoding Quantum Key Distribution System

  • Sara T. Mantey IT / University of Aveiro
  • Mariana F. Ramos IT / University of Aveiro
  • Nuno A. Silva IT
  • Armando N. Pinto IT / University of Aveiro
  • Nelson J. Muga IT

Resumo


In this work, a fully functional polarization-encoding quantum key distribution system (QKD) is demonstrated. At the transmitter side, the polarization states are prepared using an algorithm to determine the voltages to be applied on the electronic polarization controller (EPC), to generate up to four polarization states. At the receiver, a second EPC is used to perform the basis alignment. The symbol synchronization is achieved using a reference optical signal that is wavelength division multiplexed with the quantum signal which carries the polarization-encoded qubit. Frame synchronization is achieved at a protocol level. The presented QKD system works at a repetition rate of 500 Hz, with an average quantum bit error rate of 1.35%.

Referências

Sharma, A., Kumar, A. (2019) "A Survey on Quantum Key Distribution", 2nd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), IEEE, vol. 1, pp. 1-4.

Shor, P. (1999) "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM Review, vol. 41, no. 2, pp. 303-332.

Cheng, C., Lu, R., Petzoldt, A., & Takagi, T. (2017) "Securing the Internet of Things in a quantum world", IEEE Communications Magazine, vol. 55, no. 2, pp. 116-120.

Preskill, J. (2018) "Quantum Computing in the NISQ era and beyond", In: Quantum, vol. 2, pp. 79.

Gisin, N., Ribordy, G., Tittel, W., Zbinden, H. (2002) "Quantum Cryptography", In: Reviews of Modern Physics, vol. 74, no. 1, pp. 145.

Bennet, C., Brassard, G. (1984) "Quantum Cryptography: Public Key Distribution and Coin Tossing", International Conference on Computer Systems and Signal Processing, vol. 1, pp 175-179.

Gariano, J., & Djordjevic, I. (2018), "Polarization entanglement QKD with covert classical communications", In 2018 IEEE Photonics Conference (IPC), IEEE, pp. 1-2.

Vagniluca, I., et al. (2020) "Efficient Time-Bin Encoding for Practical High-Dimensional Quantum Key Distribution", Physical Review Applied, vol. 14, no. 1.

Agnesi, C., et al. (2022) "Time-bin Quantum Key Distribution exploiting the iPOGNAC polarization modulator and Qubit4Sync temporal synchronization", in Optical Fiber Communication Conference (OFC) 2022, Optica Publishing Group.

Gao, T., et al. (2022) "A Quantum Key Distribution Testbed using a Plug&play Telecom-wavelength Single-photon Source", Applied Physics Reviews, vol. 9, no. 1.

Boaron, A., et al. (2018) "Secure Quantum Key Distribution over 421 km of Optical Fiber", Physical Review Letters, vol. 121, no. 19.

Grünenfelder, F., et al. (2020) "Performance and security of 5 GHz repetition rate polarization-based quantum key distribution", Applied Physics Letters, vol. 117, no. 14.

Agnesi, C., et al. (2020) "Simple QKD with qubit-based synchronization and a self-compensating polarization encoder", Optica, vol. 7, no. 4, pp. 284-290.

Ramos, M., N. Silva, N. Muga, A. Pinto, (2021) "Reference Clock Signal Distribution for Quantum Key Distribution", Anais do I Workshop de Comunicação e Computação Quântica, Uberlândia, SBC, pp.31-36.

Mantey, S., Ramos, M., Silva, N., Pinto, A., Muga, N., (2022) "Demonstration of an Algorithm for Quantum State Generation in Polarization-Encoding QKD Systems", 2022 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1-3.

Muga, N. J., Ferreira, M. F., & Pinto, A. N. (2010) "QBER estimation in QKD systems with polarization encoding", Journal of Lightwave Technology, 29(3), 355-361.
Publicado
23/05/2022
MANTEY, Sara T.; RAMOS, Mariana F.; SILVA, Nuno A.; PINTO, Armando N.; MUGA, Nelson J.. Demonstration of a Polarization-encoding Quantum Key Distribution System. In: WORKSHOP DE COMUNICAÇÃO E COMPUTAÇÃO QUÂNTICA (WQUANTUM), 2. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 13-18. DOI: https://doi.org/10.5753/wquantum.2022.223562.