Desafios e Oportunidades de Pesquisa para o Roteamento em Redes Quânticas
Abstract
Communication between quantum devices has been advancing towards networks of complex topologies and long distances. However, intrinsic limitations of quantum signals mean that they cannot be replicated or amplified, making it difficult to adopt traditional routing techniques. Furthermore, the heterogeneity of technologies and different hardware implementations, and the lack of a well-defined Internet network stack model, open up several challenges to fully realize communication between quantum devices. Thus, this article presents the main challenges in the development of algorithms and routing protocols for quantum networks and discusses possible alternatives that are being developed.
References
Gyongyosi, L. and Imre, S. (2020). Routing space exploration for scalable routing in the quantum internet. Scientific reports, 10(1):1-15.
Humble, T. S., Sadlier, R. J., Williams, B. P., and Prout, R. C. (2018). Software-defined quantum network switching. In Disruptive Technologies in Information Sciences, volume 10652, pages 72 - 79. SPIE.
Kauffman, L. H. and Lomonaco, S. J. (2002). Quantum entanglement and topological entanglement. New Journal of Physics, 4(1):73.
Kozlowski, W., Kuipers, F., and Wehner, S. (2020). A p4 data plane for the quantum internet. Proceedings of the 3rd P4 Workshop in Europe.
Kumar, S., Lauk, N., and Simon, C. (2019). Towards long-distance quantum networks with superconducting processors and optical links. Quantum Science and Technology, 4(4):045003.
MA, H.-y., GUO, Z.-w., FAN, X.-k., and WANG, S.-m. (2015). The routing communication protocol for small quantum network based on quantum error correction code. ACTA ELECTONICA SINICA, 43(1):171.
Nielsen, Michael A.and Chuang, I. (2010). Quantum computation and quantum information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA.
Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D., and Guha, S. (2019). Routing entanglement in the quantum internet. npj Quantum Information, 5(1):1-9.
Schoute, E., Mancinska, L., Islam, T., Kerenidis, I., and Wehner, S. (2016). Shortcuts to quantum network routing.
Shi, S. and Qian, C. (2020). Concurrent entanglement routing for quantum networks: Model and designs. In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication, pages 62-75.
Van Meter, R., Satoh, R., Benchasattabuse, N., Matsuo, T., Hajdusek, M., Satoh, T., Nagayama, S., and Suzuki, S. (2021). A quantum internet architecture. arXiv preprint arXiv:2112.07092.
Wehner, S., Elkouss, D., and Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412):eaam9288.
Yin, J., Cao, Y., Li, Y.-H., Liao, S.-K., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, B., Dai, H., Li, G.-B., Lu, Q.-M., Gong, Y.-H., Xu, Y., Li, S.-L., Li, F.-Z., Yin, Y.-Y., Jiang, Z.-Q., Li, M., Jia, J.-J., Ren, G., He, D., Zhou, Y.-L., Zhang, X.-X., Wang, N., Chang, X., Zhu, Z.-C., Liu, N.-L., Chen, Y.-A., Lu, C.-Y., Shu, R., Peng, C.-Z., Wang, J.-Y., and Pan, J.-W. (2017). Satellite-based entanglement distribution over 1200 kilometers. Science, 356(6343):1140-1144.
