Performance Evaluation Model based on Precision Reduction and FPGAs applied to Seismic Modeling

  • Abner C. Barros UFPE
  • Bruno H. T. Dutra UFPE
  • Vinícius V. Brito UFPE
  • Manoel E. Lima UFPE
  • Abel Silva-Filho UFPE
  • Rodrigo Gandra Petrobrás
  • Ricardo Bragança Petrobrás

Resumo


The recent increase in computing power of FPGAs has allowed its use in areas such as seismic data processing. Additionally, besides the capability of performing computations in parallel way, FPGAs also support application-specific number representations. In this type of application, in order to achieve better performance, instead of using the floating-point standard, usually the processing and storage of data is done using the fixed point standard. However, the change of representation can cause a degradation in the quality of the results. In the petroleum industry, a seismic image of poor quality can represent an erroneous interpretation of the subsurface, resulting in catastrophic losses. For this reason, it is essential that the quality of data obtained from the seismic data processing for low precision can be evaluated within reliable technical criteria. In this paper, a real case study was used in order to evaluate the efficiency of two different metrics applied to this seismic application based on RTM algorithm. The main strategy is to explore the precision reduction in terms of SNR (Signal-to-Noise Ratio) and UIQI (Universal Image Quality Index) metrics, in order to improve the performance of the system. Results show a performance gain of 50% compared with the architecture implemented in hardware using floating point standart IEE754.

Referências

Estatísticas da Petrobrás referentes ao Pré-Sal. Disponível em: http://www.petrobras.com.br/presal/. Acessado em Junho de 2011.

R. G. Clapp, H. Fu, and O. Lindtjorn. "Selecting the right hardware for Reverse Time Migration". In: The Leading Edge 29: 48-58, January 2010.

Thomas, D.B.; Howes, L.; Luk, W. “A Comparison of CPUs, GPUs, FPGAs, and Massively Paralell Processor Arrays for Random Number Generation”. FPGA 2009, pp.63-72.

S. Che, J. Li, J.W. Sheaffer, K. Skadron, and J. Lach. "Accelerating Compute Intensive Applications with GPUs and FPGAs". In: Proc. Symp. Application Specific Processors, pp. 101-107, 2008.

M. B. Gokhale and P. S. Graham. "Reconfigurable computing: Accelerating computation with field-programmable gate arrays". Springer-Verlag, ISBN: 0387261052. New York, 2005.

Jairo Panetta et al. “Computational Characteristics of Production Seismic Migration and its Performance on Novel Processor Architectures”, In: (SBAC-PAD), October 2007.

Trevor Irons. Marmousi Model. http://www.ahay.org/RSF/book/data/marmousi/paper.pdf. Consultado em: 18 de Julho de 2010.

D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer,W. Luk, and G. A. Constantinides, “Accuracy-guaranteed bit-width optimization,” IEEE TCAD, vol. 25, no. 10, pp. 1990–2000, 2006.

G. Shan and B. Biondi, “Imaging steep salt flank with planewave migration in tilted coordinates,” SEG Technical Program Expanded Abstracts, vol. 25, no. 1, pp. 2372–2376, 2006.

H. Fu, W. Osborne, R. G. Clapp, O. Mencer and W. Luck. “Accelerating Seismic Computations Using Customized Number Representations of FPGAs” EURASIP Journal on Embedded Systems, vol. 2009, Article ID 382983, doi: 10;.1155/2009/382983, pp. 1–13, 2009.

IEEE. Padrão para números em ponto flutuante. Disponível em: http://grouper.ieee.org/groups/754/. Acessado em: Junho de 2011.

Plataformas da GiDEL: PROCe III. Disponível em: http://www.gidel.com/PROCe%20III.htm. Acessado em Junho de 2011.

FPGA Stratix III da Altera. Disponível em: [link]. Acessado em Junho de 2011.

Zhou Wang, Alan C. Bovik, “A Universal Image Quality Index”, IEEE SIGNAL PROCESSING LETTERS, vol. 9, Vol. 3, 2002.
Publicado
26/10/2011
Como Citar

Selecione um Formato
BARROS, Abner C.; DUTRA, Bruno H. T.; BRITO, Vinícius V.; LIMA, Manoel E.; SILVA-FILHO, Abel; GANDRA, Rodrigo; BRAGANÇA, Ricardo. Performance Evaluation Model based on Precision Reduction and FPGAs applied to Seismic Modeling. In: SIMPÓSIO EM SISTEMAS COMPUTACIONAIS DE ALTO DESEMPENHO (SSCAD), 12. , 2011, Vitória. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2011 . p. 9-16. DOI: https://doi.org/10.5753/wscad.2011.17262.