Memórias Não Voláteis: Uma visão geral sobre as principais tecnologias, suas características e níveis de maturidade

  • Pedro Ferro Laks UFABC
  • Emílio Francesquini UFABC

Resumo


Recentemente vem chamando a atenção o avanço nas pesquisas de novas tecnologias de memória que buscam unificar as memórias de trabalho e secundária. Neste artigo detalhamos o atual estado de desenvolvimento das principais tecnologias com esse objetivo, sendo elas chamadas de memórias emergentes, ou memórias persistentes ou SCM (Storage Class Memory). Além de descrever a evolução tecnológica de cada memória, essa revisão leva em conta as características operacionais de cada tecnologia. Esperamos com isto fornecer um material de referência sobre quais tecnologias atualmente merecem uma maior atenção. Algumas delas têm uma melhor perspectiva no curto prazo, já outras, devem levar alguns anos até se tornarem alternativas mais maduras.

Referências

A.Abiegue et al. Spin-orbit coupling mediated spin torque in a single ferromagnetic layer. Physical Review B, 80(9):094424, 2009.

A.Manchon and S.Zhang. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Physical Review B, 78(21):212405, 2008.

A.Shanbhag et al. Large-scale in-memory analytics on intel® optane™ dc persistent memory. In Proceedings of the 16th International Workshop on Data Management on New Hardware, pages 1-8, 2020.

B.Moyer. Inside the new non-volatile memories. [link], 2020.

B.Moyer. Mram evolves in multiple directions. [link], 2021.

B.Moyer. Sot-mram to challenge sram. [link], 2022.

B.Tallis. Everspin begin production of 1gb stt-mram. [link], June 2019.

C.Hsu et al. Self-rectifying bipolar tao x/tio 2 rram with superior endurance over 10 12 cycles for 3d high-density storage-class memory. In 2013 Symposium on VLSI Technology, pages T166-T167. IEEE, 2013.

D.Jana et al. Conductive-bridging random access memory: challenges and opportunity for 3d architecture. Nanoscale research letters, 10(1):1-23, 2015.

D.Lane. Ultraram™: Design, Modelling, Fabrication and Testing of Ultra-Low-Power III-V Memory Devices and Arrays. PhD thesis, Lancaster University, 2021.

D.Ralph and M.Stiles. Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320(7):1190-1216, 2008.

O. et al. Performance characterization of a dram-nvm hybrid memory architecture for hpc applications using intel optane dc persistent memory modules. In Proceedings of the International Symposium on Memory Systems, pages 288-303, 2019.

Fujitsu Ltd. Memory FRAM 4 M Bit (512 K x 8) MB85R4001A, 2 2013.

Fujitsu Ltd. Memory ReRAM 8M (1024 K x 8) Bit SPI MB85AS8MT, 2 2013.

Fujitsu Ltd. Memory ReRAM 12M (1536 K x 8) Bit SPI MB85AS12MT, 12 2021.

F.Zahoor et al. Resistive random access memory (rram): an overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale research letters, 15(1):1-26, 2020.

G.Burr et al. Overview of candidate, device technologies for storage-class memory. IBM Journal of Research and Development, 52(4.5):449-464, 2008.

G.Burr et al. Phase change memory technology. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(2):223-262, 2010.

G.Molas et al. Advances in oxide-based conductive bridge memory (cbram) technology for computing systems. In Advances in Non-Volatile Memory and Storage Technology, pages 321-364. Elsevier, 2019.

H.Lin et al. All-electrical control of compact sot-mram: Toward highly efficient and reliable non-volatile in-memory computing. Micromachines, 13(2):319, 2022.

S. Ikegawa et al. Commercialization of mram-historical and future perspective. In 2021 IEEE International Interconnect Technology Conference (IITC), pages 1-3, 2021.

Infineon Technologies AG. CY14B108L CY14B108N 8-Mbit (1024 K x 8/512 K x 16) nvSRAM, 4 2017. Rev. *P.

Infineon Technologies AG. FM22L16 4-Mbit (256K x 16) F-RAM, 11 2019. Rev. *H.

Infineon Technologies AG. Excelon LP 16-Mbit (2048K x 8) Serial (SPI) F-RAM, 12 2020. Rev. *A.

Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2 2022.

J.Choe. Intel 3d xpoint memory die removed from intel optane™ pcm (phase change memory). [link], may 2017.

J.Meena et al. Overview of emerging nonvolatile memory technologies. Nanoscale research letters, 9(1):1-33, 2014.

J.Mittal and S.Mittal. Opportunities for nonvolatile memory systems in extreme-scale high-performance computing. Computing in Science & Engineering, 17(2), 2015.

J.Shen et al. Thermal barrier phase change memory. ACS applied materials & interfaces, 11(5):5336-5343, 2019.

K.Garello et al. Sot-mram 300mm integration for low power and ultrafast embedded memories. In 2018 IEEE Symposium on VLSI Circuits, pages 81-82. IEEE, 2018.

L.Baldi et al. Emerging memories. Solid-State Electronics, 2014.

L.YingTao et al. An overview of resistive random access memory devices. Chinese Science Bulletin, 56(28):3072-3078, 2011.

M.Gallo and A.Sebastian. An overview of phase-change memory device physics. Journal of Physics D: Applied Physics, 53(21):213002, 2020.

M.Harrari et al. Mram: from stt to sot, for security and memory. In 2018 Conference on Design of Circuits and Integrated Systems (DCIS), pages 1-6. IEEE, 2018.

M.Kozicki et al. Conductive bridging random access memory-materials, devices and applications. Semiconductor Science and Technology, 31(11):113001, 2016.

O.Tizno et al. Room-temperature operation of low-voltage, non-volatile, compound-semiconductor memory cells. Scientific reports, 9(1):1-8, 2019.

R.Alhalabi et al. High density sot-mram memory array based on a single transistor. In 2018 Non-Volatile Memory Technology Symposium, pages 1-3. IEEE, 2018.

R.Freitas and W.Wilcke. Storage-class memory: The next storage system technology. IBM Journal of Research and Development, 52(4.5):439-447, 2008.

R.Smith. Intel to wind down optane memory business - 3d xpoint storage tech reaches its end. [link], 2022.

S.Bertolazzi. Mram technology and market trends. Flash Memory Summit, 2019.

S.Sills et al. A copper reram cell for storage class memory applications. In 2014 Symposium on VLSI Technology (VLSI Technology) : Digest of Technical Papers, pages 1-2. IEEE, 2014.

S.Yu and P.Chen. Emerging memory technologies: Recent trends and prospects. IEEE Solid-State Circuits Magazine, 8(2):43-56, 2016.

T.Hirofuchi et al. A prompt report on the performance of intel optane dc persistent memory module. IEICE TRANSACTIONS on Information and Systems, 103(5), 2020.

W.Wong. Unleashing mram as persistent memory, 2018.

W.Zhang et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nature Reviews Materials, 4(3):150-168, 2019.

Y.Chen et al. Reram: History, status, and future. IEEE Transactions on Electron Devices, 67(4):1420-1433, 2020.

Y.Huai et al. High density 3d cross-point stt-mram. In 2018 IEEE International Memory Workshop (IMW), pages 1-4. IEEE, 2018.

Y.Xie et al. Emerging memory technologies: design, architecture, and applications. Springer, 2013.
Publicado
19/10/2022
Como Citar

Selecione um Formato
LAKS, Pedro Ferro; FRANCESQUINI, Emílio. Memórias Não Voláteis: Uma visão geral sobre as principais tecnologias, suas características e níveis de maturidade. In: WORKSHOP DE INICIAÇÃO CIENTÍFICA - SIMPÓSIO EM SISTEMAS COMPUTACIONAIS DE ALTO DESEMPENHO (SSCAD), 23. , 2022, Florianópolis. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 25-32. DOI: https://doi.org/10.5753/wscad_estendido.2022.226288.