Breast Density Classification Using Convolutional Neural Networks and Analysis of the CLAHE Technique
Abstract
Breast cancer is the most common type of cancer and one of the leading causes of death worldwide. Early detection is essential to increase the chances of successful treatment, but current conventional methods still have limitations. Artificial intelligence has shown promise in aiding diagnosis. The project therefore seeks to use Convolutional Neural Networks to classify breast density, which is an important factor in the diagnosis of breast cancer. These networks learn automatically from raw data, classifying more accurately. The convolution operation and pooling layers are used to process the inputs and extract complex features. Fully connected layers classify and identify features. The dataset used was a combined dataset between INbreast and RSNA, pre-processed and using the CLAHE technique to increase the contrast of the mammograms. The end result was an accuracy of 89.29% for ResNet-50 and ShuffleNet.
References
——. (2023) Síntese de resultados e comentários. Acesso em: 15, junho de 2023. [Online]. Available: [link]
——. (2022) Câncer de mama: Detecção precoce. Acesso em: 15, junho de 2023. [Online]. Available: [link]
P. C. Carneiro et al., “Classificação mamográfica por densidade mamária utilizando atributos de intensidade e textura,” 2015.
N. G. de Lira Soares, K. Y. Gushiken, G. R. Freitas, A. A. M. Joaquim, and G. O. Rodrigues, “Fatores influentes na densidade mamográfica e seu impacto no câncer de mama,” Brazilian Journal of Health Review, vol. 6, no. 1, pp. 1222–1238, 2023.
C. D’Orsi, E. Sickles, E. Mendelson, and E. Morris, 2013 ACR BI-RADS Atlas: Breast Imaging Reporting and Data System. American College of Radiology, 2014. [Online]. Available: [link]
S. Boujemaa, Y. Bouzekraoui, and F. Bentayeb, “Predicting mammographic breast density assessment using artificial neural networks.” Iranian Journal of Medical Physics/Majallah-I Fı̄zı̄k-I Pizishkı̄-i Īrān, vol. 21, no. 1, 2024.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4700–4708.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural network for mobile devices,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6848–6856.
V. Saudável, “Densidade mamária,” 2024, acesso em: 13, agosto de 2024. [Online]. Available: [link]
N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin et al., “Mammographic density and the risk and detection of breast cancer,” New England journal of medicine, vol. 356, no. 3, pp. 227–236, 2007.
R. N. M. Figueira, Â. I. d. Santos, M. E. Camargo, and H. A. Koch, “Fatores que influenciam o padrão radiológico de densidade das mamas,” Radiologia Brasileira, vol. 36, pp. 287–292, 2003.
K. Zuiderveld, “Viii.5. - contrast limited adaptive histogram equalization,” in Graphics Gems, P. S. Heckbert, Ed. Academic Press, 1994, pp. 474–485. [Online]. Available: [link]
E. Matsuyama, M. Takehara, N. Takahashi, and H. Watanabe, “A breast density classification system for mammography considering reliability issues in deep learning,” Open Journal of Medical Imaging, vol. 13, no. 3, pp. 63–83, 2023.
M.-L. Huang and T.-Y. Lin, “Considering breast density for the classification of benign and malignant mammograms,” Biomedical Signal Processing and Control, vol. 67, p. 102564, 2021. [Online]. Available: [link]
N. Saffari, H. A. Rashwan, M. Abdel-Nasser, V. Kumar Singh, M. Arenas, E. Mangina, B. Herrera, and D. Puig, “Fully automated breast density segmentation and classification using deep learning,” Diagnostics, vol. 10, no. 11, p. 988, 2020.
I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, and J. S. Cardoso, “Inbreast: toward a full-field digital mammographic database,” Academic radiology, vol. 19, no. 2, pp. 236–248, 2012.
Kaggle, “Rsna breast cancer detection - data,” 2024, acesso em: 13, agosto de 2024. [Online]. Available: [link]
——, “Kaggle: Your machine learning and data science community,” 2024, acesso em: 17, agosto de 2024. [Online]. Available: [link]
American College of Radiology, “Bi-rads: Reporting and data systems,” 2024, acesso em: 17, agosto de 2024. [Online]. Available: [link]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. S. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” Advances in Neural Information Processing Systems, vol. 32, 2019. [Online]. Available: [link]
M. A. Wani et al., Advances in Deep Learning. Springer, 2020, vol. 57. [Online]. Available: DOI: 10.1007/978-981-13-6794-6
M. A. Nielsen, Neural Networks and Deep Learning. San Francisco, CA, USA: Determination Press, 2015.
J. V. Savietto, “Machine learning: Métricas, validação cruzada, bias e variância,” 2024, acesso em: 17, agosto de 2024. [Online]. Available: [link]
