Classification of Histopathological Images of Breast Cancer Using Convolutional Neural Networks

Resumo


Convolutional neural networks (CNNs) play a crucial role in early diagnosis detection, aiding healthcare professionals in decision-making. This study utilizes different CNN architectures (AlexNet, ResNet-50, and EfficientNet) to classify breast cancer histopathological images as benign or malignant, using the BreakHis dataset. The models were trained and evaluated with various magnifications and epochs, measuring the performance of each model based on metrics such as accuracy, recall, and specificity in image classification. The results showed that EfficientNet achieved an average of 98.15%, ResNet-50 reached 98.18%, and AlexNet obtained 95.47%.

Palavras-chave: Convolutional Neural Networks (CNNs), Breast Cancer Detection, Histopathological Image Classification, BreakHis, Image Classification

Referências

“Câncer de mama,” Instituto Nacional de Câncer - INCA, 2023, acessado em 15 de julho de 2024. [Online]. Available: [link]

“Outubro rosa 2023,” Instituto Nacional de Câncer - INCA, 2023, acessado em 15 de julho de 2024. [Online]. Available: [link]

“Detecção precoce,” Instituto Nacional de Câncer - INCA, 2023, acessado em 15 de julho de 2024. [Online]. Available: [link]

P. C. R. Boasquevisque, “Classificação do grau histológico de malignidade em câncer de mama utilizando programas de análise automatizada de imagens e aprendizado de máquina,” Ph.D. dissertation, Brasil, 2020.

Y. N. Tan, V. P. Tinh, P. D. Lam, N. H. Nam, and T. A. Khoa, “A transfer learning approach to breast cancer classification in a federated learning framework,” IEEE Access, vol. 11, pp. 27462–27476, 2023.

I.-R. Macasoi and V.-E. Neagoe, “Breast cancer detection using thermal infrared image analysis based on dempster-shafer decision fusion of cnn classifiers,” in 2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2023, pp. 01–06.

“O que é câncer?” Instituto Nacional de Câncer - INCA, 2022, acessado em 15 de julho de 2024. [Online]. Available: [link]

“Câncer de mama: vamos falar sobre isso?” Instituto Nacional de Câncer - INCA, 2023, acessado em 15 de julho de 2024. [Online]. Available: [link]

D. R. Brown. (2024) Histopathology. Acessado em 16 de julho de 2024. [Online]. Available: [link]

“Breast cancer histopathological database (breakhis),” BreakHis, 2023, acesso em 23 de outubro de 2023. [Online]. Available: [link]

A. C. G. Vargas, A. Paes, and C. N. Vasconcelos, “Um estudo sobre redes neurais convolucionais e sua aplicação em detecção de pedestres,” in Proceedings of the xxix conference on graphics, patterns and images, vol. 1, no. 4. sn, 2016.

M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep Learning, 1st ed., ser. Studies in Big Data. Springer Singapore, 2020. [Online]. Available: DOI: 10.1007/978-981-13-6794-6

C. C. Aggarwal et al., Neural networks and deep learning. Springer, 2018, vol. 10, no. 978.

“Convolutional neural networks,” IBM, 2024. [Online]. Available: [link]

F. Parvin and M. A. M. Hasan, “A comparative study of different types of convolutional neural networks for breast cancer histopathological image classification,” in 2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020, pp. 945–948.

J. G. Melekoodappattu, A. S. Dhas, B. K. Kandathil, and K. Adarsh, “Breast cancer detection in mammogram: Combining modified cnn and texture feature based approach,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 9, pp. 11397–11406, 2023.

G. Barbosa, L. Moreira, P. Moises de Sousa, R. Moreira, and A. Backes, “Optimization and learning rate influence on breast cancer image classification,” in Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications- Volume 3: VISAPP, INSTICC. SciTePress, 2024, pp. 792–799.

V. E. Balas, S. S. Roy, D. Sharma, and P. Samui, Eds., Handbook of Deep Learning Applications, 1st ed., ser. Smart Innovation, Systems and Technologies. Springer Cham, 2019. [Online]. Available: DOI: 10.1007/978-3-030-11479-4

N. Ahmad, S. Asghar, and S. A. Gillani, “Transfer learning-assisted multi-resolution breast cancer histopathological images classification,” The Visual Computer, vol. 38, no. 8, pp. 2751–2770, 2022.
Publicado
06/11/2024
MIRANDA, Bernardo Teixeira de; SOUSA, Pedro Moises de. Classification of Histopathological Images of Breast Cancer Using Convolutional Neural Networks. In: WORKSHOP DE SISTEMAS DE INFORMAÇÃO (WSIS), 15. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 63-68. DOI: https://doi.org/10.5753/wsis.2024.33674.