Experimental Results Analyzes in Resilient Mechanism for SDN-Based UAV Network Applied to Environmental Protection Area Surveillance

  • Diego S. Pereira IFRN / UFRN
  • Vitor G. Santos IFRN
  • Luís B. P. Nascimento IFRN / UFRN
  • Pablo J. Alsina UFRN

Resumo


A surveillance system requires repetitive and uninterrupted actions, typically related to large extension places, and difficult access. In this context, a multiple Unmanned Aerial Vehicles (multi-UAV) system is a good alternative for overcoming the requirements imposed by this application. With this in mind, the UAVs have to work cooperatively and exchange information to finish the mission. However, managing and keeping the communication between UAVs is a challenge that has been investigated. So, the SD-FANET is an SDN architecture developed to mitigate this communication problem. SD-FANET has a hierarchical distributed control plane that provides a resilience mechanism to overcome failures during a mission runtime. The three-step strategy (detection, election, and recovery) allows the control plane outperforms failures and works continuously as long as there are nodes in the UAV network. Experimental tests were performed in three scenarios. In all of them, the controller executed the resilience mechanism and keep going working. The mean time was 1,94 seconds to 300 executions. The PDF of results was similar to a normal distribution demonstrating the behavior of the recovery time.

Referências

Alotaibi, E. T., AlQefari, S. S., and Koubaa, A. (2019). Lsar: Multi-uav collaboration for search and rescue missions. IEEE Access.

Ammar, H. A., Nasser, Y., and Kayssi, A. (2017). Dynamic sdn controllers-switches mapping for load balancing and controller failure handling. In 2017 International Symposium on Wireless Communication Systems (ISWCS), pages 216-221. IEEE.

Bekmezci, I., Sen, I., and Erkalkan, E. (2015). Flying ad hoc networks (fanet) test bed implementation. In 2015 7th International Conference on Recent Advances in Space Technologies (RAST), pages 665-668. IEEE.

Binol, H., Bulut, E., Akkaya, K., and Guvenc, I. (2019). Time optimal multi-uav path planning for gathering its data from roadside units. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1-5. IEEE.

Botelho, F., Bessani, A., Ramos, F., and Ferreira, P. (2014a). Smartlight: A practical fault-tolerant sdn controller. arXiv preprint arXiv:1407.6062.

Botelho, F., Bessani, A., Ramos, F. M., and Ferreira, P. (2014b). On the design of practical fault-tolerant sdn controllers. In 2014 third European workshop on software defined networks, pages 73-78. IEEE.

Cumino, P., Lobato Junior, W., Tavares, T., Santos, H., Rosário, D., Cerqueira, E., Villas, L., and Gerla, M. (2018). Cooperative uav scheme for enhancing video transmission and global network energy efficiency. Sensors, 18(12):4155.

e Silva, T. D., de Melo, C. F. E., Cumino, P., Rosario, D., Cerqueira, E., and De Freitas, E. P. (2019). Stfanet: Sdn-based topology management for flying ad hoc network. IEEE Access, 7:173499-173514.

Foerster, K.-T., Schmid, S., and Vissicchio, S. (2018). Survey of consistent software-defined network updates. IEEE Communications Surveys & Tutorials.

Fu, Z., Mao, Y., He, D., Yu, J., and Xie, G. (2019). Secure multi-uav collaborative task allocation. IEEE Access, 7:35579-35587.

Garcia-Molina, H. (1982). Elections in a distributed computing system. IEEE Computer Architecture Letters, 31(01):48-59.

Gupta, L., Jain, R., and Vaszkun, G. (2015). Survey of important issues in uav communication networks. IEEE Communications Surveys & Tutorials, 18(2):1123-1152.

Hu, N., Tian, Z., Sun, Y., Yin, L., Zhao, B., Du, X., and Guizani, N. (2021). Building agile and resilient uav networks based on sdn and blockchain. IEEE Network, 35(1):57-63.

Lakhani, G. and Kothari, A. (2020). Coordinator controller election algorithm to provide failsafe through load balancing in distributed sdn control plane. In International Conference on Computing Science, Communication and Security, pages 234-250. Springer.

Li, X. and Savkin, A. V. (2021). Networked unmanned aerial vehicles for surveillance and monitoring: A survey. Future Internet, 13(7):174.

Liu, C. H., Ma, X., Gao, X., and Tang, J. (2019). Distributed energy-efficient multi-uav navigation for long-term communication coverage by deep reinforcement learning. IEEE Transactions on Mobile Computing.

Moazzeni, S., Khayyambashi, M. R., and Movahhedinia, N. (2019). Improving the reliability of software-defined networks with distributed controllers through leader election algorithm and colored petri-net. Wireless Personal Communications, 109(1):645-656.

Moazzeni, S., Khayyambashi, M. R., Movahhedinia, N., and Callegati, F. (2018). On reliability improvement of software-defined networks. Computer Networks, 133:195-211.

Pereira, D., Nascimento, L., Santos, V., Fernandes, D., and Alsina, P. (2019). Sd-fanet: uma arquitetura para redes aéreas definidas por software aplicadas à varredura de área. In Anais Estendidos do IX Simpósio Brasileiro de Engenharia de Sistemas Computacionais, pages 71-76. SBC.

Pereira, D. S., De Morais, M. R., Nascimento, L. B., Alsina, P. J., Santos, V. G., Fernandes, D. H., and Silva, M. R. (2020). Zigbee protocol-based communication network for multi-unmanned aerial vehicle networks. IEEE Access, 8:57762-57771.

Qi, W., Song, Q., Kong, X., and Guo, L. (2017). A traffic-differentiated routing algorithm in flying ad hoc sensor networks with sdn cluster controllers. Journal of the Franklin Institute.

Santos, V. G., Pereira, D. S., Alsina, P., Fernandes, D. H., Nascimento, L. B., Leite, D. L., Morais, M. R., Silva, M. R., and Souza, E. S. (2019). Multi-uav system architecture for environmental protection area monitoring. In Proc. Anais do Simpsio Brasileiro de Automao Inteligente, pages 1-6.

Sathesh, B. (2015). Optimized bully algorithm. International Journal of Computer Applications, 121(18).

Tang, Y., Hu, Y., Cui, J., Liao, F., Lao, M., Lin, F., and Teo, R. S. (2019). Vision-aided multi-uav autonomous flocking in gps-denied environment. IEEE Transactions on Industrial Electronics, 66(1):616-626.

Vazquez-Carmona, E. V., Vasquez-Gomez, J. I., and Herrera-Lozada, J. C. (2019). Environmental monitoring using embedded systems on uavs. IEEE Latin America Transactions, 18(02):303-310.

Yue, X., Liu, Y., Wang, J., Song, H., and Cao, H. (2018). Software defined radio and wireless acoustic networking for amateur drone surveillance. IEEE Communications Magazine, 56(4):90-97.

Zhao, Z., Cumino, P., Souza, A., Rosário, D., Braun, T., Cerqueira, E., and Gerla, M. (2019). Software-defined unmanned aerial vehicles networking for video dissemination services. Ad Hoc Networks, 83:68-77.

Zhou, Y., Rao, B., and Wang, W. (2020). Uav swarm intelligence: Recent advances and future trends. IEEE Access, 8:183856-183878.
Publicado
27/05/2022
PEREIRA, Diego S.; SANTOS, Vitor G.; NASCIMENTO, Luís B. P.; ALSINA, Pablo J.. Experimental Results Analyzes in Resilient Mechanism for SDN-Based UAV Network Applied to Environmental Protection Area Surveillance. In: WORKSHOP DE TESTES E TOLERÂNCIA A FALHAS (WTF), 23. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 43-56. ISSN 2595-2684. DOI: https://doi.org/10.5753/wtf.2022.223443.