Rain Gutter Detection in Aerial Images for Aedes aegypti Mosquito Prevention
Resumo
The detection of Aedes aegypti mosquito is essential in the prevention process of serious diseases such as dengue, yellow fever, chikungunya, and Zika virus. Common approaches consist of surveillance agents who need to enter residences to find and eliminate these outbreaks, but often they are unable to do this work due to the absence or resistance of the resident. This paper proposes an automatic system that uses aerial images obtained through a camera coupled from an Unmanned Aerial Vehicle (UAV) to identify rain gutters from a shed that may be mosquitoes’ foci. We use Digital Image Processing (DIP) techniques to differentiate the objects that may or may not be those foci of the mosquito-breeding. The experimental results show that the system is capable of automatically detecting the appropriately mosquito-breeding location.
Referências
E. Duarte, G. D. S. Ferreira, and M. B. D. Turcato, “Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus zika até a semana epidemiológica 7,” 2018, [accessed Feb 13]. [Online]. Available: http://portalarquivos2.saude.gov.br/images/pdf/2018/marco/06/ 2018-008-Publicacao.pdf
A. A. P. Neto, A. S. Souza, and J. H. Arruda, “Boletim de vigilância em saúde. boletim epidemiológico,” 2018, [accessed Feb13]. [Online]. Available: http://www.uberlandia.mg.gov.br/uploads/cmsbarquivos/18763.pdf
E. M. G. Paula, R. A. Oliveira, and G. A. Correa, “Boletim de vigilância em saúde,” 2018, [accessed Feb 13]. [Online]. Available: http://www.uberlandia.mg.gov.br/uploads/cmsbarquivos/18854.pdf
V. S. Santos, “Ciclo de vida do aedes aegypti,” 2018, [accessed Feb 13]. [Online]. Available: https://brasilescola.uol.com.br/animais/ciclo-vida-aedes-aegypti.htm
A. Mendonça, “Brasil: 2 milh˜oes de casos de doenças causadas pelo aedes aegypti,” 2018, [accessed Feb 13]. [Online]. Available: https://www.tarobanews.com/noticias/ciencia-e-saude/brasil-2-milhoes-de-casos-de-doencas-causadas-pelo-aedes-aegypti-pMW2l.html
Brasil, “Nota a imprensa: Papel dos agentes comunitários de saúde,” 2018, [accessed Feb 13]. [Online]. Available: http://combateaedes.saude.gov.br/pt/profissional-e-gestor/orientacoes/141-papel-dos-agentes-comunitarios-de-saude
P. Anupa Elizabeth, S. M, P. Paulraj, S. Pandian, and B. Tyagi, “Identification and eradication of mosquito breeding sites using wireless networking and electromechanical technologies,” 12 2014.
M. Mehra, A. Bagri, X. Jiang, and J. Ortiz, “Image analysis for identifying mosquito breeding grounds,” in 2016 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), June 2016, pp. 1–6.
J. Livingston and R. Steele, “A crowdsensing algorithm for imputing zika outbreak location data,” in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), Oct 2017, pp. 334–340.
A. Amarasinghe, C. Suduwella, L. Niroshan, C. Elvitigala, K. De Zoysa, and C. Keppetiyagama, “Suppressing dengue via a drone system,” in 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer), Sep. 2017, pp. 1–7.
T. Dias, V. Alves, H. Alves, L. Pinheiro, R. Pontes, G. Araujo, A. Lima, and T. Prego, “Autonomous detection of mosquito-breeding habitats using an unmanned aerial vehicle,” in 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education, Nov 2018, pp. 351–356.
J. Serra, Image Analysis and Mathematical Morphology. Book, 1982.
R. C. Gonzalez and R. C. Woods, Processamento Digital de Imagens, 3rd ed. Pearson, 2010.
R. Duda and P. E. Hart, “Use of the hough transformation to detect lines and curves in pictures,” CACM, vol. 15, pp. 11–15, 1972.