Impacts of Color Space Transformations on Dysplastic Nuclei Segmentation Using CNN

  • Dalí dos Santos UFU
  • Adriano Silva UFU
  • Paulo de Faria UFU
  • Bruno Travençolo UFU
  • Marcelo do Nascimento UFU


Oral epithelial dysplasia is a common precancerous lesion type that can be graded as mild, moderate and severe. Although not all oral epithelial dysplasia become cancer over time, this premalignant condition has a significant rate of progressing to cancer and the early treatment has been shown to be considerably more successful. The diagnosis and distinctions between mild, moderate, and severe grades are made by pathologists through a complex and time-consuming process where some cytological features, including nuclear shape, are analysed. The use of computer-aided diagnosis can be applied as a tool to aid and enhance the pathologist decisions. Recently, deep learning based methods are earning more and more attention and have been successfully applied to nuclei segmentation problems in several scenarios. In this paper, we evaluated the impact of different color spaces transformations for automated nuclei segmentation on histological images of oral dysplastic tissues using fully convolutional neural networks (CNN). The CNN were trained using different color spaces from a dataset of tongue images from mice diagnosed with oral epithelial dysplasia. The CIE L*a*b* color space transformation achieved the best averaged accuracy over all analyzed color space configurations (88.2%). The results show that the chrominance information, or the color values, does not play the most significant role for nuclei segmentation purpose on a mice tongue histopathological images dataset.

Palavras-chave: CNN, deep learning, dysplasia, nuclei segmentation, color spaces


F. Bray, J. Ferlay, I. Soerjomataram, R. Siegel, L. Torre, and A. Jemal, “Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries: Global cancer statistics 2018,” CA: A Cancer Journal for Clinicians, vol. 68, 09 2018.

INCA. (2020) Instituto nacional de câncer josé alencar gomes da silva (inca). [Online]. Available: 1

J. Baik, Q. Ye, L. Zhang, C. Poh, M. Rosin, C. Macaulay, and M. Guillaud, “Automated classification of oral premalignant lesions using image cytometry and random forests-based algorithms,” Cellular Oncology, vol. 37, p. 193 – 202, 2014. [Online]. Available:

D. K. Das, S. Bose, A. K. Maiti, B. Mitra, G. Mukherjee, and P. K. Dutta, “Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis,” Tissue and Cell, vol. 53, pp. 111 – 119, 2018. [Online]. Available:

H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for nuclei detection, segmentation and classification in digital histopathology: A review current status and future potential,” IEEE reviews in biomedical engineering, vol. 7, pp. 97–114, 05 2014. 1

F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, “Deep learning in microscopy image analysis: A survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 10, pp. 4550–4568, 2018.

D. F. D. dos Santos, T. A. A. Tosta, A. B. Silva, P. R. de Faria, B. A. N. Travençolo, and M. Z. do Nascimento, “Automated nuclei segmentation on dysplastic oral tissues using CNN,” in Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), July 2020, pp. 45–50.

A. R. Robertson, “The CIE 1976 color-difference formulae,” in Color Research & Application, vol. 2, 1977, pp. 7–11. 2

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

M. M. Fernández-Carrobles, G. Bueno, O. Déniz, J. Salido, M. García- Rojo, and L. González-López, “Influence of texture and colour in breast tma classification,” PloS one, vol. 10, 2015.

H. Lumerman, P. Freedman, and S. Kerpel, “Oral epithelial dysplasia and the development of invasive squamous cell carcinoma,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 79, no. 3, pp. 321 – 329, 1995. [Online]. Available:

T. Falk, D. Mai, R. Bensch, Ö zgünçiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J. Deubner, Z. Jäckel, K. Seiwald, A. Dovzhenko, O. Tietz, C. D. Bosco, S. Walsh, D. Saltukoglu, T. L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T. Brox, and O. Ronneberger, “U-net – deep learning for cell counting, detection, and morphometry,” Nat. Methods, vol. 16, pp. 67–70, 2019.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul 2019. [Online]. Available: s40537-019-0197-0

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, Jan 1979.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS Autodiff Workshop, 2017.
Como Citar

Selecione um Formato
DOS SANTOS, Dalí; SILVA, Adriano; DE FARIA, Paulo; TRAVENÇOLO, Bruno; DO NASCIMENTO, Marcelo. Impacts of Color Space Transformations on Dysplastic Nuclei Segmentation Using CNN. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 16. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 6-11. DOI: