Automatic Detection of COVID-19 in X-Ray Images Using Fully-Connected Neural Networks
Resumo
The coronavirus pandemic remains a problem of worldwide interest. The diagnosis of COVID-19 is difficult due to its high rate of occurrence and the limited number of test kits. Medical imaging is already widespread and has been used to quickly provide lung visualization. It’s needed some expertise from the radiologist to detect elements in the image that allow differentiating the sick and healthy patterns. Therefore, our goal with this paper is to provide a computer-aided diagnosis tool to help radiologists to accurately diagnose the COVID-19 using XRay images. For that, a model based on Fully-Connected Neural Networks was proposed for the detection of patients infected with coronavirus, through the analysis of texture characteristics, such as Haralick and Threshold Adjacency Statistics (TAS) descriptors, extracted from chest X-Ray images. Using 10-Fold Cross-Validation, the proposed method achieved an accuracy of 98.39%, showing itself as an option to aid the disease diagnosis.
Referências
Parnian Afshar, Shahin Heidarian, Farnoosh Naderkhani, Anastasia Oikonomou, Konstantinos N Plataniotis, and Arash Mohammadi. Covidcaps: A capsule network-based framework for identication of covid-19 cases from x-ray images. arXiv preprint arXiv:2004.02696, 2020.
Ministério da Saúde. Quanto tempo o vírus sobrevive nas superfícies. Disponível em: https://coronavirus.saude.gov.br/index.php/perguntas-e-respostas. Acessado em: 30 jun. 2020.
Organização Mundial das Nações Unidas (ONU). Organização mundial da saúde declara novo coronavírus uma pandemia. Disponível em: https://news.un.org/pt/story/2020/03/1706881. Acessado em: 25 jun. 2020.
M. de Freitas Oliveira Baffa and L. Grassano Lattari. Convolutional neural networks for static and dynamic breast infrared imaging classi- cation. In 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 174–181, 2018.
Site de notícias G1. páses da íAsia, oceania, américa do norte, europa, oriente médio, américa do sul e íAfrica são afetados pela covid-19. Disponível em: https://g1.globo.com/ciencia-e-saude/noticia/2020/01/23/numero-de-paises-com-casos-conrmados-de-coronavirus.ghtml. Acessado em: 29 jun. 2020.
Folha de São Paulo. Grupo de risco do novo coronavírus. Disponível em: https://www1.folha.uol.com.br/equilibrioesaude/2020/05/homens-e-idosos-sao-quem-mais-morre-de-covid-19-no-estado-de-sp.shtml. Acessado em: 29 jun. 2020.
Nicholas A Hamilton, Radosav S Pantelic, Kelly Hanson, and Rohan D Teasdale. Fast automated cell phenotype image classication. BMC bioinformatics, 8(1):110, 2007.
Robert M Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, pages 610–621, 1973.
Ezz El-Din Hemdan, Marwa A Shouman, and Mohamed Esmail Karar. Covidx-net: A framework of deep learning classifiers to diagnose covid- 19 in x-ray images. arXiv preprint arXiv:2003.11055, 2020.
Sara Hosseinzadeh Kassani, Peyman Hosseinzadeh Kassasni, Michal J Wesolowski, Kevin A Schneider, and Ralph Deters. Automatic detection of coronavirus disease (covid-19) in x-ray and ct images: A machine learning-based approach. arXiv preprint arXiv:2004.10641, 2020.
Ali Narin, Ceren Kaya, and Ziynet Pamuk. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:2003.10849, 2020.
Caio Vinicius de Oliveira. Coronavírus: uso de tomografia computadorizada na detecção. Disponível em: https://brasilrad.com.br/artigos/coronavirus-uso-de-tomografia-computadorizada-na-deteccao/. Acessado em: 30 jun. 2020.
Omir Antunes Paiva and Luciano M Prevedello. O potencial impacto da inteligência artificial na radiologia. Radiologia Brasileira, 50(5):V–VI, 2017.
Tawsifur Rahman, Dr. Muhammad Chowdhury, and Amith Khandakar. Covid-19 radiography database. Disponível em: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database. Acessado em: 25 jun. 2020.
B. Ramsundar and R.B. Zadeh. TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning, chapter 4. O’Reilly Media, 2018.
sanarMed. Diagnóstico do coronavírus. Disponível em: https://www.sanarmed.com/coronavirus-origem-sinais-sintomas-achados-tratamentos. Acessado em: 2 julho. 2020.
saude do viajante. Covid-19 associado a sars-cov-2 - mundial. Disponível em: http://www.saudedoviajante.pr.gov.br/2020/04/94/COVID-19-associado-a-SARS-CoV-2-Mundial.html. Acessado em: 25 jun. 2020.
Fengxiang Song, Nannan Shi, Fei Shan, Zhiyong Zhang, Jie Shen, Hongzhou Lu, Yun Ling, Yebin Jiang, and Yuxin Shi. Emerging 2019 novel coronavirus (2019-ncov) pneumonia. Radiology, 295(1):210–217, 2020.
Linda Wang and Alexander Wong. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. arXiv preprint arXiv:2003.09871, 2020.
Tzu-Tsung Wong. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 48(9):2839–2846, 2015.
Rikiya Yamashita, Mizuho Nishio, Richard Do, and Kaori Togashi. Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9, 06 2018.