Automatic Yeast Detection and Counting Using Computer Vision Techniques
Resumo
This paper presents the development of a computer vision system that automatically identifies and counts viable and inviable brewer's yeast, to improve the time and accuracy of results obtained compared to the manual expert counting method commonly performed in the brewing industry. The equipment used consists of a digital video camera coupled to an optical microscope, which transmits the captured images, in real time, to the computer. Two approaches were tested and implemented, one taking into account the morphology and color of yeasts, and the other using machine learning. Although there are programs that automatically count yeasts, this is the first application that makes use of convolutional neural network techniques with Yolo to identify yeasts, making the results more accurate and reliable compared to manual methods. Experiments were carried out to measure the performance and accuracy of the prototype, which are presented in this article.
Referências
J. Redmon, (2018) YOLOv3: An Incremental Improvement, arxiv.org, arXiv:1804.02767.
CARVALHO, G. B. M.; BENTO, C. V.; SILVA, J. B. A. (2006) Elementos Fundamentais no Processo Cervejeiro: 1ª parte- As leveduras. Revista Analítica. São Paulo, 2006.
BRIGGS, D. E. Malts and malting. London: Blackie Academic and Professional; Gaithersburg:Aspen, 1998. 796p.
CECCATO-ANTONINI, S. R. (2010) Microbiologia da fermentação alcoólica: a importância do monitoramento microbiológico em destilarias. São Carlos: EdUFSCar, Vol. 27, p. 120, Nº 5, 2010.
MCCONELL, S. (2004). Code Complete: A practical handbook of software-construction practices. Second Edition. Microsoft Press, Redmond, WA, EUA.
Qt (2021), portal oficial do software de desenvolvimento Qt, em https://www.qt.io/, acessado em 25 de setembro de 2021.
GONZALEZ, Rafael C. e WOODS, Richard E. (2010) Processamento Digital de Imagens. São Paulo: Pearson Education do Brasil. 2010.
J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection (2015), arxiv.org, arXiv:1506.02640.
LabelImg (2021), projeto de código aberto disponível no GitHub em https://github.com/tzutalin/labelImg, acessado em 25 de setembro de 2021.
A. Bochkovskiy, C. Y. Wang, H.-Y. M. Liao. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection), arxiv.org, arXiv:2004.10934.
GOMIDE, J.V.B.; CUNHA, E. V.; YeastSoft, counting yeast cells automatically. 2018. Patente: Programa de Computador. Número do registro: 512018052212-2, data de registro: 27/11/2018, título: "YeastSoft, counting yeast cells automatically" , Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial.
GOMIDE, J. V. B.; CUNHA, E. V. ; GOMIDE, G. B. . YeastSmartCount, counting yeast cells automatically with artificial intelligency. 2019. Patente: Programa de Computador. Número do registro: 512019001821-4, data de registro: 31/07/2019, Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial.
RASCHKA, S. (2014). An Overview of General Performance Metrics of Binary Classifier Systems. arXiv preprint arXiv:1410.5330
THOLUDUR, A.; GIRON, L.; ALAM, K.; THOMAS, T.; GARR, E.; WEATHERLY, G.; KULOWIEC, K.; QUICK, M.; SHEPARD, S. (2006). Comparing automated and manual cell counts for cell culture applications. Bioprocess Int. 2006, 4, 28-34.
MONGELO, A. I., DA SILVA, D. S., QUINTA, L. N. B., PISTORI, H., E CEREDA, M. P. (2011). Validação de método baseado em visão computacional para automação de contagem de viabilidade de leveduras em indústrias alcooleiras. páginas 17-21 Outubro, Bento Gonçalves, RS.
CORRÊA, B. et al. Método fluorescente (diacetato de fluoresceína e brometo de etídio) para o estudo da viabilidade de cryptococcus neoformans em liquor. Ver. Inst. Med. Trop. São Paulo v. 32, p.46-50, 1990.
CARPENTER, A.E. ET AL. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100.
LAMPRECHT M.R.; SABATINI D.M.; CARPENTER A.E.(2007). CellProfiler: free, versatile software for automated biological image analysis. BioT(echniques, v. 42, pp. 71- 75.
SOUZA J. S.; (2015) Identificação de Viabilidade de leveduras com corante vital utilizando histogramas de palavras visuais em imagens coloridas. Dissertação de Mestrado da UFMS.
SCHIER, J. K.; B. (2011) Automated Counting of Yeast Colonies using the Fast Radial Transform Algorithm. Bioinformatics, p. 22-27, 2011.
LUCARINI A. C.; SILVA L. A.; BIANCHI R. A. C (2011). Um sistema para a contagem semi-automática de microorganismos. PESQUISA & TECNOLOGIA FEI - Nº 26 p 36-40. Disponível em http://fei.edu.br/~rbianchi/publications/RevistaFEI2004-a.pdf acessado em 06/01/2019.
RASCHKA, S. (2014). An Overview of General Performance Metrics of Binary Classifier Systems. arXiv preprint arXiv:1410.5330.
CONGALTON, R. G. (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, v. 49, n. 12, p. 1671-1678