Patch-Based Model for the Classification of Soybean Leaf Diseases

  • Gustavo Vigilato G. S. UTFPR
  • Pablo G. Cavalcanti UTFPR

Abstract


The disease detection is vital to increase the productivity and quality of soybean cultivation and this detection is usually carried out in a laboratory, which is time consuming and costly. To overcome these issues, there is a growing demand for technologies that aim at a faster detection and classification of diseases. In this context, this work proposes the extraction of several patches from a leaf image and combining a convolutional neural network with a support vector machine, we present a complete model for the classification of soybean leaf diseases. In this approach, an image dataset with evidence of diseases commonly observed in soybean crops was analyzed and our experiments achieved precisions greater than 90%.

Keywords: Soybean leaf diseases, Classification, Convolutional Neural Network

References

EMBRAPA, “Soja em números (safra 2020/21),” tech. rep., Londrina, 2021.

A. A. B. Junior, M. H. Hirakuri, J. C. Franchini, H. Debiasi, and R. H. Ribeir, “Análise da área, produção e produtividade da soja no brasil em duas décadas (1997-2016),” Londrina, 2017.

J. F. J. Grigolli, “Manejo de doenças na cultura da soja,” Tecnologia & Produção Soja 2014/2015, 2015.

R. D. L. Pires, D. N. Gonçalves, J. P. M. Oruê, W. E. S. Kanashiro, J. F. Rodrigues, B. B. Machado, and W. N. Gonçalves, “Local descriptors for soybean disease recognition,” Computers and Electronics in Agriculture, vol. 125, pp. 48-55, 2016.

A. dos Santos Ferreira, “Redes neuras convolucionais profundas na detecção de plantas daninhas em lavouras de soja,” Master's thesis, Universidade Federal Do Mato Grosso Do Sul, 2017.

A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, “A robust deep-learningbased detector for real-time tomato plant diseases and pests recognition,” Sensors (Basel, Switzerland), vol. 17, 2017.

S. M. Hassan, A. K. Maji, M. Jasinski, Z. Leonowicz, and E. Jasinska, “Identification of plant-leaf diseases using cnn and transfer-learning approach,” Electronics, vol. 10, no. 12, 2021.

J. G. A. Barbedo and C. V. Godoy, “Automatic classification of soybean diseases based on digital images of leaf symptoms,” in X congresso Brasileiro De Agroinformática, 2015.

A. Karlekar and A. Seal, “Soynet: Soybean leaf diseases classification,” Comput. Electron. Agric., vol. 172, p. 105342, 2020.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” 2015.
Published
2021-11-22
S., Gustavo Vigilato G.; CAVALCANTI, Pablo G.. Patch-Based Model for the Classification of Soybean Leaf Diseases. In: WORKSHOP ON COMPUTATIONAL VISION (WVC), 17. , 2021, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 113-117. DOI: https://doi.org/10.5753/wvc.2021.18899.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.