Measuring the Root Length of Peanuts Grown in Rhizotrons Using Computer Vision
Resumo
Peanut is one of the most grown leguminous crops in the world, but it can suffer during water deficit periods. In this paper, a new method to help monitoring root growth for laboratory experiments with this plant is proposed. By using a new combination of smoothing, thresholding, morphological filtering and skeletonization, our method has achieved a correlation of 0.968 with the Tennant's standard approach.
Referências
G. d. S. Freitas, G. F. Barbosa, A. M. Zuffo, and F. Steiner, “Co-inoculation of peanut (arachis hypogaea l.) with bradyrhizobium and azospirillum promotes greater tolerance to drought,” Research, Society and Development, vol. 9, no. 7, p. e69973690, Apr. 2020.
F. R. Echer, P. R. L. Zanfolin, A. C. M. Moreira, A. C. P. Santos, and P. H. Gorni, “Root growth and carbohydrate partitioning in cotton subjected to shading in the initial phase,” Ciência Rural, vol. 49, no. 1, 2019.
M. Gidea, M. Magureanu, R. I. Teodorescu, L. M. Iosub, and D. Cimponeriu, “The impact of plasma treatment over wheat seeds,” International Multidisciplinary Scientific GeoConference: SGEM, vol. 17, pp. 361-368, 2017.
J. M. Gandullo Tovar, S. Ahmad, E. Darwish, R. Karlova, and C. Testerink, “Phenotyping tomato root developmental plasticity in response to salinity in soil rhizotrons,” Plant Phenomics, 2760532., 2021.
C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth international conference on computer vision (IEEE Cat. No. 98CH36271). IEEE, 1998, pp. 839-846.
N. Khetan, L. Kejriwal, and S. Indu, “Enhancement of degraded manuscript images using adaptive gaussian thresholding,” International Journal of Future Generation Communication and Networking, vol. 10, no. 1, pp. 47-60, 2017.
T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236-239, 1984.
G. Bradski, “The OpenCV Library,” Dr. Dobb's Journal of Software Tools, 2000.
S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors, “scikit-image: image processing in Python,” PeerJ, vol. 2, p. e453, 6 2014. [Online]. Available: https://doi.org/10.7717/peerj.453
J. Nunez-Iglesias, A. J. Blanch, O. Looker, M. W. Dixon, and L. Tilley, “A new python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton,” PeerJ, vol. 6, pp. e4312-e4312, Feb 2018, 29472997[pmid], PMC5816961[pmcid], 4312[PII]. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29472997, https://doi.org/10.7717/peerj.4312
D. Tennant, “A test of a modified line intersect method of estimating root length,” The Journal of Ecology, pp. 995-1001, 1975.
S. Dong, D. Neilsen, G. H. Neilsen, and M. Weis, “A scanner-based root image acquisition technique for measuring roots on a rhizotron window,” HortScience, vol. 38, pp. 1385-1388, 2003.