Data Augmentation and Convolutional Network Architecture Influence on Distributed Learning

Resumo


Convolutional Neural Networks (CNNs) have proven to be highly effective in solving a broad spectrum of computer vision tasks, such as classification, identification, and segmentation. These methods can be deployed in both centralized and distributed environments, depending on the computational demands of the task. While much of the literature has focused on the explainability of CNNs, which is essential for building trust and confidence in their predictions, there remains a gap in understanding their impact on computational resources, particularly in distributed training contexts. In this study, we analyze how CNN architectures primarily influence model accuracy and investigate additional factors that affect computational efficiency in distributed systems. Our findings contribute valuable insights for optimizing the deployment of CNNs in resource-intensive scenarios, paving the way for further exploration of variables critical to distributed learning.
Palavras-chave: distributed learning, rice classification, data augumentation, CNN, factorial design
Publicado
06/11/2024
JANSEN, Victor Forattini; MARTINS, Emanuel Teixeira; LIMA, Yasmin Souza; DE OLIVEIRA SILVA, Flavio; MOREIRA, Rodrigo; RODRIGUES MOREIRA, Larissa Ferreira. Data Augmentation and Convolutional Network Architecture Influence on Distributed Learning. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 54-60.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.