Deep Learning-Based Segmentation of Nanomaterial Images Acquired via Scanning Electron Microscopy

Resumo


This work investigates the application of deep learning techniques to analyze nanomaterial images acquired by scanning electron microscopy (SEM). The main objective is to improve the segmentation of zinc oxide (ZnO) nanoparticles and graphene oxide (GO) nanosheets. For this purpose, we developed a dedicated database for the supervised training of deep neural networks, using the U-Net architecture. Given the high spatial resolution of the original images, we investigated two approaches for image subdivision during the training and testing stages. Due to the high cost of acquiring and annotating SEM images of nanomaterials, we applied transfer learning through fine-tuning, adapting the network previously trained on ZnO images to segment GO images. The results were promising, with accuracies and recalls exceeding 95% for both ZnO and GO images.

Palavras-chave: Deep learning, U-Net, nanomaterial, scanning electron microscopy
Publicado
06/11/2024
DONATO, Ivânia Maria Lucinda De; LUNZ, Juliana do Nascimento; MARQUES, Fernanda Davi; ARCHANJO, Bráulio Soares; LOPES, Francisco José Pereira; GIRALDI, Gilson Antônio. Deep Learning-Based Segmentation of Nanomaterial Images Acquired via Scanning Electron Microscopy. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 83-90.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.