Artificial Intelligence for Gas Leak Detection with Thermal Cameras and Metal Oxide Semiconductor Sensors

Resumo


Early detection of gas leaks is crucial for safety and efficiency in oil platforms and refineries. The presence of various hazardous gases, often imperceptible to human senses, poses significant risks. AI-powered solutions can effectively monitor for gas leaks, improving safety and ensuring efficient operations. In this work we proposed a modular architecture effectively combines tabular data from gas sensors and spatial information from thermal images using a variety of backbones, including MobileNet. By employing dense layers and an optimized training strategy, we achieved state-of-the-art performance, with 100% accuracy, demonstrating the effectiveness of our approach for gas leakage detection.

Palavras-chave: Gas Leak Detection, AI-powered Solution, Multimodal Data Fusion
Publicado
06/11/2024
SANCHES, Edmilson et al. Artificial Intelligence for Gas Leak Detection with Thermal Cameras and Metal Oxide Semiconductor Sensors. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 91-98.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.