A Novel Brazilian Dataset for Automatic Detection of Psyllid Attacksin Guava

Resumo


Guava, a fruit native to America, plays a crucial role in the Brazilian economy, with production reaching 564,000 tons by 2022. It is widely used in culinary dishes and herbal remedies, and is exported to numerous countries. However, guava is also susceptible to pests and diseases. Among these, Psyllid Triozoda Limbata is particularly problematic, attacking young leaves and leading to reduced fruit yields and impaired plant development. To address this issue and assist producers in detecting pest infestations, this study introduces a novel dataset comprising images from Brazil. By leveraging Artificial Intelligence and Computer Vision techniques, this dataset provides a foundation for developing pest detection systems. We evaluated various object detection architectures including different versions of YOLO and Vision Transformer (ViT). The experiments indicated that YOLO V5 achieved promising results, with a precision of 93.14%. Moreover, the availability of this dataset opens new opportunities for enhancing pest management strategies, improving crop protection, and increasing the overall productivity in the guava industry.
Palavras-chave: Psyllids, Deep Learning, Guava Trees, Object Detection
Publicado
06/11/2024
MESQUITA, Iago Magalhães de; RODRIGUES MOREIRA, Larissa Ferreira; NUNES, Rhuan da Silva; DE PAULA JÚNIOR, Iális Cavalcante. A Novel Brazilian Dataset for Automatic Detection of Psyllid Attacksin Guava. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 151-157.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.