Rust Detection in Coffee Leaves Using Otsu's Method and Mathematical Morphology

Resumo


Coffee leaf rust is a major threat to global coffee production, causing significant yield and quality losses. Traditional detection methods rely on manual inspection, which is labor-intensive, time-consuming, and susceptible to human error. This study presents an automated system for detecting coffee leaf rust using image processing techniques, combining Otsu's thresholding method with mathematical morphology to accurately identify rust-affected areas in digital images. The methodology addresses challenges such as variability in image quality, noise, and segmentation accuracy. Using a dataset of manually annotated images, the system's performance was evaluated with the Dice coefficient, demonstrating its effectiveness. Finally, we compare the results with a method that uses genetic algorithms to achieve the same goal, obtaining good results despite using a much simpler process.

Palavras-chave: Coffee Leaf Rust, Otsu's Thresholding, Automated Plant Disease Detection, Segmentation Accuracy, Dice Coefficient
Publicado
06/11/2024
RIVAS, Rene Ernesto García; MELO, Renata dos Santos; SAIDE, Saide Manuel; BACKES, André Ricardo; FERNANDES, Henrique Coelho. Rust Detection in Coffee Leaves Using Otsu's Method and Mathematical Morphology. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 212-219.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.