Leveraging Optimal Methods for Diverse Skin Types Classification in Images for Reduced Bias

  • Luiz Augusto Vieira Manoel USP
  • Moacir Antonelli Ponti USP

Resumo


This paper addresses the bias in automatic skin tone classification, highlighting how technologies can mirror societal issues such as inadequate representation of diverse skin tones. The objective is to evaluate methods that ensure balanced performance across skin types despite a scarcity of annotated databases with ethnic-racial details. Using the Fitzpatrick Skin Type classification system, we assess various skin color labeling algorithms, selecting optimal approaches for each type based on f-score. Results show that a single method biases results towards certain skin tones, whereas combining methods enhances accuracy across diverse types. We leverage the LFW and Fitzpatrick17k databases and apply image processing techniques like gamma transformation, CLAHE, histogram equalization, and non-linear order statistics filters. By tailoring processes to specific skin tone ranges, our auto-labeling approach better mirrors manual labeling, aiming for more equitable technology.
Palavras-chave: Skin Tone Classification, Image Processing, Representativeness
Publicado
06/11/2024
MANOEL, Luiz Augusto Vieira; PONTI, Moacir Antonelli. Leveraging Optimal Methods for Diverse Skin Types Classification in Images for Reduced Bias. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 250-256.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.