Exploiting Data Augmentation Strategies to Improve the Classification of Spinal Disorders in X-Ray Images

Abstract


Spinal disorders affect a significant portion of the population and are a growing concern for healthcare authorities due to their potentially debilitating consequences. In this context, computer vision techniques offer a promising path for rapid diagnosis, but they often require large datasets to train robust and reliable models. However, public datasets that can support the training of such models are scarce. To address this, we explored the application of advanced data augmentation strategies, namely CutMix, CutOut, and MixUp, combined with standard augmentation techniques to improve the performance of deep learning models in classifying X-ray images into three categories: (i) healthy, (ii) scoliosis, and (iii) spondylolisthesis. We applied these techniques by training the ResNet-50, Vision Transformer (ViT), and Swin Transformer V2 architectures, evaluating their effectiveness for this task. Our experiments revealed that the combination of ViT architecture and CutMix augmentation achieved the highest accuracy, with a performance of 0.9882.

Keywords: Spinal Disorders, Deep Learning, Data Augmentation, CutMix, CutOut, MixUp
Published
2024-11-06
MARTINS PEREIRA, João Flávio; MARI, João Fernando; SILVA, Leandro Henrique Furtado Pinto. Exploiting Data Augmentation Strategies to Improve the Classification of Spinal Disorders in X-Ray Images. In: WORKSHOP ON COMPUTATIONAL VISION (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 257-264.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.