Evaluating Deep Learning Models for Effective Weed Classification in Agricultural Images

Resumo


Effective weed management is crucial for maximizing agricultural productivity and minimizing crop losses. Traditional methods for weed detection and classification often suffer from errors and delays, particularly in the absence of specialists. Deep learning technologies offer a promising alternative for automating these tasks, potentially enhancing both accuracy and efficiency. This study compares three advanced deep learning architectures, ResNet-50, EfficientNet V2, and Vision Transformers (ViT), for classifying weed species using the DeepWeeds dataset. We explore the effects of data augmentation on model performance, evaluating each model based on accuracy, precision, recall, and F1 score. Our results demonstrate that data augmentation significantly improves model performance. EfficientNet V2 achieved the highest performance across all metrics, with a peak accuracy of 0.9703. This research provides valuable insights into selecting effective architectures and training strategies for more accurate weed detection in agricultural applications.

Palavras-chave: Deep Learning, Weed Classification, Data Augmentation, CNNs
Publicado
06/11/2024
FERREIRA, Bianca Panacho; MOREIRA, Pedro Henrique Campos; SILVA, Leandro Henrique Furtado Pinto; MARI, João Fernando. Evaluating Deep Learning Models for Effective Weed Classification in Agricultural Images. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 265-272.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.