Agricultural Traceability via NAmob Application: The First Evaluation Cycle under Design Science Research




Agricultural Traceability, Agriculture 4.0, Mobile Application, Design Science Research


Traceability of vegetable products is a market requirement and became mandatory in Brazil in 2018. This article shows the results of the digital transformation of physical documents from the production areas and the use of harvest batches to track fruit loads, via mobile application, under Design Science Research, at Cooperativa Agroindustrial Nova Aliança. The initial evaluation cycle allowed the use of this application by 127 families, representing 30.97% in the 20/21 harvest. The solution replaced records in physical documents, improved production traceability on 20 million kilograms of grapes, reduced load compliance issues, showed viability in agriculture and has been widely used by farmers.


Download data is not yet available.

Author Biographies

Leonardo Reffatti, Universidade do Vale do Rio dos Sinos (UNISINOS)

Leonardo Reffatti
Escola Politécnica - Universidade do Vale do Rio dos Sinos (UNISINOS)
Engenheiro Agrônomo - Cooperativa Agroindustrial Nova Aliança

Jorge Luis Victória Barbosa, Universidade do Vale do Rio dos Sinos (UNISINOS)

Jorge Luis Victória Barbosa
Professor do Programa de Pós-Graduação em Computação Aplicada (PIPCA)
Universidade do Vale do Rio dos Sinos (UNISINOS)


Abenavoli, L. M., Cuzzupoli, F., Chiaravalloti, V., and Proto, A. R. (2016) Traceability system of olive oil: A case study based on the performance of a new software cloud. Agronomy Research, 14(4), 1247-1256. [link] [GS Search]

Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, 1–15. doi: 10.1002/9781118445112.stat07841

Aquino, A., Millan, B., Gaston, D., Diago, María-Paz and Tardaguila J. (2015) vitisFlower®: Development and testing of a novel android-smartphone application for assessing the number of grapevine flowers per inflorescence using artificial vision techniques. Sensors, 15(9), 21204-21218. doi: 10.3390/s150921204 [GS Search]

Araújo, S. O., Peres, R. S., Barata, J., Lidon, F. and Ramalho, J. C. (2021) Characterising the Agriculture 4.0 Landscape: Emerging Trends, Challenges and Opportunities. Agronomy, 11(4), 667. doi: 10.3390/agronomy11040667 [GS Search]

Barbosa, J. Z., Prior, S. A., Pedreira, G. Q., Motta, A. C. V., Poggere, G. C. and Goularte, G. D. (2020) Global trends in apps for agriculture. Multi-Science Journal, 3(1), 16-20. doi: 10.33837/msj.v3i1.1095 [GS Search]

Brasil. (2018) Ministerio da Saúde e Agencia Nacional de Vigilância Sanitária - Instrução Normativa Conjunta ANVISA/SDA No. 2 de 07/02/2018. [link]

Bonire, G. and Gbenga-Ilori, A. (2021) Towards artificial intelligence-based reduction of greenhouse gas emissions in the telecommunications industry. Scientific African, 12, e00823. doi: 10.1016/j.sciaf.2021.e00823 [GS Search]

Buainain, A. M., Cavalcante, P. and Consoline, L. (2021) Estado atual da agricultura digital no Brasil: inclusão dos agricultores familiares e pequenos produtores rurais. [link] [GS Search]

Camargo, U. A., Tonietto, J. and Hoffmann, A. (2011) Progressos na viticultura brasileira. Revista Brasileira de Fruticultura, 33(spe1), 144-149. doi: 10.1590/s0100-29452011000500017 [GS Search]

Car, N. J., Christen, E. W., Hornbuckle, J. W. and Moore, G. A. (2012) Using a mobile phone SMS for irrigation scheduling in Australia - Farmers’participation and utility evaluation. Computers and Electronics in Agriculture, 84, 132–143. doi: 10.1016/j.compag.2012.03.003 [GS Search]

Cechin, A. (2014) “Cooperativas brasileiras nos mercados agroalimentares contemporâneos: limites e perspectivas”, In: O Mundo Rural no Brasil do Século 21: A formação de um novo padrão agrário e agrícola, Buainain, A. M., Alves, E., Silveira, J. M. and Navarro, Z. Brasília, Embrapa, p. 479-507. [link] [GS Search]

Dresch, A., Lacerda, D. P. and Junior, J. A. V. A. (2015) Design Science Research: Método de Pesquisa para Avanço da Ciência e Tecnologia. Bookman. Rio Grande do Sul, Brasil.

Frankelius, P, Norrman, C. and Johansen, K. (2019) Agricultural Innovation and the Role of Institutions: Lessons from the Game of Drones. Journal of Agricultural and Environmental Ethics, 32, 681-707. doi: 10.1007/s10806-017-9703-6 [GS Search]

Furlaneto, F. P. B. and Manzano, L. M. (2010) Agricultura de precisão e a rastreabilidade de produtos agrícolas. [link] [GS Search]

Gao, H., Wang, Z. and Yuchuan, L. (2019) Application of Intelligent Traceability Management System in Agriculture - Take Aodong Fruit and Vegetable Planting Cooperative as an Example. Journal of Physics: Conference Series, 1302(2), 022046. doi: 10.1088/1742-6596/1302/2/022046 [GS Search]

Given, L. M., Deloire, A., Kelly, W. and Paschke, P. (2017) User-engaged app development: Building better apps for the vineyard. In Proceedings of the Association for Information Science and Technology, 54 (1), 685-686. doi: 10.1002/pra2.2017.14505401116 [GS Search]

Granato, D., Carrapeiro, M. M., Fogliano, V. and van Ruth, S. M. (2016). Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: A review. Trends in Food Science and Technology, 52, 31-48. doi: 10.1016/j.tifs.2016.03.013 [GS Search]

Helfer, G. A., Costa, A. B. da, Bavaresco, R. S. and Barbosa, J. L. V. (2021) Tellus-Onto: uma ontologia para classificação e inferência de solos na agricultura de precisão. In XVII Brazilian Symposium on Information Systems (SBSI 2021). Association for Computing Machinery, New York, NY, USA, Article 13, 1–7. doi: 10.1145/3466933.3466946 [GS Search]

Ioannou, K., Karampatzakis, D., Amanatidis, P., Aggelopoulos, V. and Karmiris, I. (2021) Low-cost automatic weather stations in the internet of things. Information, 12(4), 146. doi: 10.3390/info12040146 [GS Search]

Leonelli, F. C. V. and Toledo, J. C. (2006) Rastreabilidade em cadeias agroindustriais: conceitos e aplicações. [link]

Lever, J., Krzywinski, M. and Altman, N. (2017). Points of Significance: Principal component analysis. Nature Methods, 14(7), 641–642. doi: 10.1038/nmeth.4346 [GS Search]

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2), 209–220. [link] [GS Search]

Melo, L. M. R. and Machado, C. A. E. (2017) Cadastro Vitícola do Rio Grande do Sul: 2013 a 2015. [link] [GS Search]

Nutini, F., Confalonieri, R., Crema, A., Movedib, E., Palearib, L., Stavrakoudisc, D. and Boschettia, M. (2018) An operational workflow to assess rice nutritional status based on satellite imagery and smartphone apps. Computers and Electronics in Agriculture, 154, 80–92. doi: 10.1016/j.compag.2018.08.008 [GS Search]

Pérez-Expósito, J. P., Fernández-Caramés, T. M., Fraga-Lamas, P. and Castedo, L. (2017) An IoT monitoring system for precision viticulture. In Proceedings 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 662–669. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.104 [GS Search]

Pongnumkul, S., Chaovalit, P. and Surasvadi, N. (2015) Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 2015, Article ID 195308, 18. doi: 10.1155/2015/195308 [GS Search]

Protas, J. F. S., Camargo, U. A. and Melo, L. M. R. (2002) A viticultura brasileira: realidade e perspectivas.[link] [GS Search]

Reffatti, L., Oliveira, G. G. and Shibata, M. (2021) Fruit traceability via mobile application. Comunicata Scientiae, 12, e3483. [link] [GS Search]

Romani, L. A. S., Magalhães, G., Bambini, M. D. and Evangelista, S. R. M. (2015) Improving digital ecosystems for agriculture: Users participation in the design of a mobile app for agrometeorological monitoring. In Proceedings of the 7th International ACM Conference on Management of Computational and CollEctive Intelligence in Digital EcoSystems (MEDES 2015). ACM, New York, NY, 234–241. doi: 10.1145/2857218.2857270 [GS Search]

Rose, D. C. and Chilvers, J. (2018) Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Frontiers in Sustainable Food Systems, 2, 1-7. doi: 10.3389/fsufs.2018.00087 [GS Search]

Selvaraj, J. D. F., Paul, P. M. and Jingle, I. Diana J. (2019) Automatic Wireless Water Management System (AWWMS) for Smart Vineyard Irrigation using IoT Technology. International Journal of Oceans and Oceanography, 13(1), 211-218.[link] [GS Search]

Simionato, R., Neto, J. R. T., Santos, C. J., Ribeiro, B. S., Araújo, F. C. B., Paula, A. R., Oliveira, P. A. L., Fernandes, P. S. and Yi, J. H. (2020) Survey on connectivity and cloud computing technologies: State-of-the-art applied to Agriculture 4.0. Revista Ciência Agronômica, 51, 1–19. [link] [GS Search]

Talavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., Quiroz, L. A., Hoyos, A. and Garreta, Luis E. (2017) Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142, Part A, 283-297. doi: 10.1016/j.compag.2017.09.015 [GS Search]

Trendov, N. M., Varas, S. and Zeng, M. (2019) Digital Technologies in Agriculture and Rural Areas.[link] [GS Search]

Xu, C., Chen, K., Zuo, M., Liu, H. and Wu, Y. (2021) Urban Fruit Quality Traceability Model Based on Smart Contract for Internet of Things. Wireless Communications and Mobile Computing 2021, Article ID 9369074, 1-10. doi: 10.1155/2021/9369074 [GS Search]



How to Cite

Reffatti, L., Brietzke Porto, J., & Victória Barbosa, J. L. (2023). Agricultural Traceability via NAmob Application: The First Evaluation Cycle under Design Science Research. ISys - Brazilian Journal of Information Systems, 16(1), 9:1–9:31.



Extended versions of selected articles