Improving Colorectal Cancer Diagnosis Using MIRNet and InceptionV3 on Histopathological Images

  • Neilson P. Ribeiro IFMA / UFMA
  • Felipe R. S. Teles UFMA
  • João Otávio Beira Diniz IFMA
  • Luana B. da Cruz UFCA
  • Domingos A. Dias Jr. UFCA
  • Geraldo Braz Junior UFMA
  • João D. S. de Almeida UFMA
  • Anselmo C. de Paiva UFMA

Resumo


Colorectal cancer (CRC) is the second most prevalent type of cancer among men and women in Brazil, accounting for 9.1% of cancers in men and 9.2% in women between 2020 and 2022. CRC diagnosis typically relies on histopathological images, which can be challenging to interpret and prone to errors. This paper proposes a method for diagnosing CRC using histopathological images. This method involves enhancing images with MIRNet and classifying them as benign or malignant using InceptionV3. The results surpass the state-of-the-art by introducing, for the first time, enhancement through MIRNet, achieving an accuracy of 99.67% and an AUC of 0.9999. We believe that this method, combined with medical expertise, holds great promise for early CRC diagnosis.
Publicado
17/11/2024
RIBEIRO, Neilson P.; TELES, Felipe R. S.; DINIZ, João Otávio Beira; CRUZ, Luana B. da; DIAS JR., Domingos A.; BRAZ JUNIOR, Geraldo; ALMEIDA, João D. S. de; PAIVA, Anselmo C. de. Improving Colorectal Cancer Diagnosis Using MIRNet and InceptionV3 on Histopathological Images. In: BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 13. , 2024, Belém/PA. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 321-334. ISSN 2643-6264.