Modeling music popularity as an epidemic: insights from the Brazilian market

  • Gabriel P. Oliveira UFMG
  • Luca Vassio Politecnico di Torino
  • Ana Paula Couto da Silva UFMG
  • Mirella M. Moro UFMG

Resumo


Social networks have drastically changed the music market scenario, enabling songs to reach massive audiences in record time. Given the fast-paced nature of music popularity, this work investigates whether epidemic models can effectively capture how songs gain traction. We apply the Susceptible-Infected-Recovered (SIR) model to analyze music virality and success in Brazil. Virality reflects a song’s rapid surge in popularity, whereas success represents its long-term endurance. By comparing the model’s fit for both trajectories, we assess its strengths and limitations in capturing music popularity trends. Our findings reveal that SIR provides a better fit for virality than for long-term success, reinforcing the differences between both processes and, consequently, offering a new perspective on how songs become popular in the digital age.

Referências

Barbieri, N. and Bonchi, F. (2014). Influence maximization with viral product design. In SDM, volume 1, page 55 – 63.

Barbosa, G. R. G. et al. (2021). Hot Streaks in the Brazilian Music Market: A Comparison Between Physical and Digital Eras. In SBCM, pages 152–159. SBC.

Bjørnstad, O. N. et al. (2020). Modeling infectious epidemics. Nature methods, 17(5):455–457.

Cançado, P. G. N. et al. (2024). Ajuste de parâmetros do modelo epidemiológico SIR em redes sociais geradas por modelos para simulação da covid-19 em município mineiro. In BraSNAM, pages 103–115. SBC.

Centola, D. and Macy, M. (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3):702–734.

Cha, M. et al. (2012). The spread of media content through blogs. Social Network Analysis and Mining, 2(3):249 – 264.

Compte, D. L. and Klug, D. (2021). ”it’s viral!” - A study of the behaviors, practices, and motivations of tiktok users and social activism. In CSCW Companion, pages 108–111, Online. ACM.

Dhanaraj, R. and Logan, B. (2005). Automatic prediction of hit songs. In ISMIR, pages 488–491, London, UK. ISMIR.

Guerini, M. et al. (2011). Exploring text virality in social networks. In ICWSM, pages 506–509, Barcelona, Spain. The AAAI Press.

Li, Y. and Shao, L. (2024). Using an epidemiological model to explore the interplay between sharing and advertising in viral videos. Scientific Reports, 14(1).

Ling, C. et al. (2022). Slapping cats, bopping heads, and oreo shakes: Understanding indicators of virality in tiktok short videos. In WebSci, pages 164–173. ACM.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The annals of math. statistics, pages 50–60.

Medina, F. J. L. (2023). Social learning and the complex contagion of political symbols in twitter: The case of the yellow ribbon in catalonia. Big Data Soc., 10(2).

Mondelli, M. L. B. et al. (2018). O que os países escutam: Analisando a rede de gêneros musicais ao redor do mundo. In BraSNAM, Natal.

Mønsted, B. et al. (2017). Evidence of complex contagion of information in social media: An experiment using twitter bots. PloS one, 12(9):e0184148.

Moura, F. A. S. et al. (2024). Characterization of the Brazilian musical landscape: a study of regional preferences based on the Spotify charts. In WebMedia, pages 80–88. SBC.

Nika, M. et al. (2015). Going multi-viral: Synthedemic modelling of internet-based spreading phenomena. In VALUETOOLS, page 50 – 57.

Oliveira, G. P. et al. (2024a). A quantitative comparison of viral and hit songs in the Brazilian music market. Vórtex Music Journal, 12:1–29.

Oliveira, G. P. et al. (2024b). Analyzing the temporal relation between virality and success in the Brazilian music market. In SEMISH, pages 157–168. SBC.

Pereira, F. S. F. et al. (2018). That’s my jam! uma análise temporal sobre a evolução das preferências dos usuários em uma rede social de músicas. In BraSNAM, Natal. SBC.

Raponi, S. et al. (2022). Fake news propagation: A review of epidemic models, datasets, and insights. ACM Trans. Web, 16(3):12:1–12:34.

Rosati, D. P. et al. (2021). Modelling song popularity as a contagious process. Proceedings of the Royal Society A, 477(2253):20210457.

Sachak-Patwa, R. et al. (2018). Understanding viral video dynamics through an epidemic modelling approach. Physica A: Statistical Mechanics and its Applications, 502:416 – 435.

Seufitelli, D. B. et al. (2023a). Hit song science: a comprehensive survey and research directions. J. New Music Res., 52(1):41–72.

Seufitelli, D. B. et al. (2023b). MGD+: An Enhanced Music Genre Dataset with Success-based Networks. In Dataset Showcase Workshop, pages 36–47. SBC.

Sharma, R. S. et al. (2011). The emergence of electronic word-of-mouth as a marketing channel for the digital marketplace. Journal of Information, Information Technology, and Organizations, 6:41 – 61.

Ternovski, J. and Yasseri, T. (2020). Social complex contagion in music listenership: A natural experiment with 1.3 million participants. Soc. Networks, 61:144–152.

Virtanen, P. et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272.
Publicado
20/07/2025
OLIVEIRA, Gabriel P.; VASSIO, Luca; SILVA, Ana Paula Couto da; MORO, Mirella M.. Modeling music popularity as an epidemic: insights from the Brazilian market. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING (BRASNAM), 14. , 2025, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 79-92. ISSN 2595-6094. DOI: https://doi.org/10.5753/brasnam.2025.8760.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2 3 4 5 > >>