Co-authorship prediction in academic social network

  • William Takahiro Maruyama Universidade de São Paulo
  • Luciano Antonio Digiampietri Universidade de São Paulo


The prediction of relationships in a social network is a complex and extremely useful task to enhance or maximize collaborations by indicating the most promising partnerships. In academic social networks, prediction of relationships is typically used to try to identify potential partners in the development of a project and/or co-authors for publishing papers. This paper presents an approach to predict coauthorships combining artificial intelligence techniques with the state-of-the-art metrics for link predicting in social networks.

Palavras-chave: Predição de Relacionamentos, Redes Sociais Acadêmicas, Predição de Links


Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., and Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3-4):590–614.

Bartal, A., Sasson, E., and Ravid, G. (2009). Predicting links in social networks using text mining and sna. In Social Network Analysis and Mining, 2009. ASONAM ’09. Int. Conf. on Advances in, pages 131–136.

da Silva Soares, P. and Bastos Cavalcante Prudencio, R. (2012). Time series based link prediction. In The 2012 Int. Joint Conference on Neural Networks (IJCNN), pages 1–7.

de Sa, H. and Prudencio, R. (2011). Supervised link prediction in weighted networks. In The 2011 Int. Joint Conference on Neural Networks (IJCNN), pages 2281–2288.

Digiampietri, L., Mena-Chalco, J., de Jésus Pérez-Alcázar, J., Tuesta, E. F., Delgado, K., and Mugnaini, R. (2012a). Minerando e caracterizando dados de currículos lattes. In CSBC 2012 - BraSNAM.

Digiampietri, L., Mena-Chalco, J., Silva, G. S., Oliveira, L., Malheiro, A., and Meira, D. (2012b). Dinâmica das relações de coautoria nos programas de pós-graduação em computação no brasil. In CSBC 2012 - BraSNAM.

Digiampietri, L., Santiago, C., and Alves, C. (2013). Predição de coautorias em redes sociais acadêmicas: um estudo exploratório em ciência da computação. In CSBC 2013 - BraSNAM.

Digiampietri, L. A., Maruyama, W. T., Santiago, C. R. N., and da Silva Lima, J. J. (2015). Um sistema de predição de relacionamentos em redes sociais. In XI Simpósio Brasileiro de Sistemas de Informação (SBSI 2015), pages 139–146.

Dong, Y., Ke, Q., Rao, J., Wang, B., and Wu, B. (2011). Random walk based resource allocation: Predicting and recommending links in cross-operator mobile communication networks. In Data Mining Workshops (ICDMW), 2011 IEEE 11th Int. Conf. on, pages 358–365.

Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N., Rao, J., and Cao, H. (2012). Link prediction and recommendation across heterogeneous social networks. In Data Mining (ICDM), 2012 IEEE 12th Int. Conf. on, pages 181–190.

Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., and Elovici, Y. (2011). Link prediction in social networks using computationally efficient topological features. In Privacy, security, risk and trust (passat), 2011 ieee third Int. conference on and 2011 ieee third Int. conference on social computing (socialcom), pages 73–80.

Gao, S., Denoyer, L., and Gallinari, P. (2012). Link prediction via latent factor blockmodel. In Proceedings of the 21st Int. Conf. Companion on World Wide Web, WWW ’12 Companion, pages 507–508, New York, NY, USA. ACM.

Getoor, L. and Diehl, C. P. (2005). Link mining: A survey. SIGKDD Explor. Newsl., 7(2):3–12.

Guo, J. and Guo, H. (2010). Multi-features link prediction based on matrix. In Computer Design and Applications (ICCDA), 2010 Int. Conf. on, volume 1, pages V1–357–V1–361.

Hasan, M. and Zaki, M. (2011). A survey of link prediction in social networks. In Aggarwal, C. C., editor, Social Network Data Analytics, pages 243–275. Springer US.

Hasan, M. A., Chaoji, V., Salem, S., and Zaki, M. (2006). Link prediction using supervised learning. In In Proc. of SDM 06 workshop on Link Analysis, Counterterrorism and Security.

Hsieh, C.-J., Tiwari, M., Agarwal, D., Huang, X. L., and Shah, S. (2013). Organizational overlap on social networks and its applications. In Proceedings of the 22Nd Int. Conf. on World Wide Web, WWW ’13, pages 571–582, Republic and Canton of Geneva, Switzerland. Int. World Wide Web Conferences Steering Committee.

Liben-Nowell, D. and Kleinberg, J. (2003). The link prediction problem for social networks. In Proceedings of the Twelfth Int. Conf. on Information and Knowledge Management, CIKM ’03, pages 556–559, New York, NY, USA. ACM.

Lin, Z., Yun, X., and Zhu, Y. (2012). Link prediction using benefitranks in weighted networks. In Proceedings of the The 2012 IEEE/WIC/ACM Int. Joint Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01, WI-IAT ’12, pages 423–430, Washington, DC, USA. IEEE Computer Society.

Lu, L. and Zhou, T. (2010). Link prediction in complex networks: A survey. Physica A, abs/1010.0725(6):1150–1170.

Lu, Z., Savas, B., Tang, W., and Dhillon, I. (2010). Supervised link prediction using multiple sources. In Data Mining (ICDM), 2010 IEEE 10th Int. Conf. on, pages 923–928.

Makrehchi, M. (2011). Social link recommendation by learning hidden topics. In Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pages 189–196, New York, NY, USA. ACM.

Maruyama, W. and Digiampietri, L. (2016). Predição de relacionamentos em redes sociais, uma revisão sistemática. In CSBC2016 - BraSNAM.

Newman, M. (2010). Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA.

Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2):404–9.

Pavlov, M. (2007). Finding experts by link prediction in co-authorship networks. CEUR Workshop Proceedings, 290:42–55.

Perez, C., Birregah, B., and Lemercier, M. (2012). The multi-layer imbrication for data leakage prevention from mobile devices. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th Int. Conf. on, pages 813–819.

Quercia, D. and Capra, L. (2009). Friendsensing: Recommending friends using mobile phones. In Proceedings of the Third ACM Conference on Recommender Systems, Rec-Sys ’09, pages 273–276, New York, NY, USA. ACM.

Sun, Y., Barber, R., Gupta, M., Aggarwal, C. C., and Han, J. (2011). Co-author relationship prediction in heterogeneous bibliographic networks. In IEEE/ACM Int. Conf. on Advances in Social Networks Analysis and Mining, pages 121–128.

Sun, Y., Han, J., Aggarwal, C. C., and Chawla, N. V. (2012). When will it happen?: relationship prediction in heterogeneous information networks. In Proceedings of the fifth ACM Int. Conf. on Web Search and Data Mining, WSDM ’12, pages 663–672, New York, NY, USA. ACM.

Tian, Y., He, Q., Zhao, Q., Liu, X., and Lee, W. (2010). Boosting social network connectivity with link revival. In Proceedings of the 19th ACM Int. Conf. on Information and Knowledge Management, CIKM ’10, pages 589–598, New York, NY, USA. ACM.

Vasuki, V., Natarajan, N., Lu, Z., and Dhillon, I. S. (2010). Affiliation recommendation using auxiliary networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pages 103–110, New York, NY, USA. ACM.

Viswanath, B., Mislove, A., Cha, M., and Gummadi, K. P. (2009). On the evolution of user interaction in facebook. Proceedings of the 2nd ACM workshop on Online social networks - WOSN ’09, page 37.

Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applications, volume 8. Cambridge university press.

Zhong, E., Fan, W., Zhu, Y., and Yang, Q. (2013). Modeling the dynamics of composite social networks. In Proceedings of the 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD ’13, pages 937–945, New York, NY, USA. ACM.
Como Citar

Selecione um Formato
MARUYAMA, William Takahiro; DIGIAMPIETRI, Luciano Antonio. Co-authorship prediction in academic social network. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING (BRASNAM), 2016. , 2016, Porto Alegre. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2016 . p. 79-90. ISSN 2595-6094. DOI: