Predição de Relacionamentos em Redes Sociais, uma Revisão Sistemática
Resumo
A área de análise de redes sociais está em ascensão. Uma importante tarefa desta área é a predição de relacionamentos, na qual o objetivo é prever conexões entre usuários. Para a realização desta tarefa são utilizados atributos, métodos, algoritmos e técnicas que medem, de alguma forma, a possibilidade de um relacionamento ser criado. No entanto, existem muitas abordagens e combinações de atributos para predizer relacionamentos. Este trabalho tem como objetivo realizar um levantamento abrangente dos atributos ou características que podem ser utilizados na predição de relacionamentos nos diversos contextos das redes sociais, a partir da metodologia de Revisão Sistemática.
Referências
Almansoori,W., Gao, S., Jarada, T., Alhajj, R., and Rokne, J. (2011). Link prediction and classification in social networks and its application in healthcare. In Information Reuse and Integration (IRI), 2011 IEEE International Conference on, pages 422–428.
Biolchini, J., Mian, P. G., Candida, A., and Natali, C. (2005). Systematic Review in Software Engineering. Technical Report May, Systems Engineering and Computer Science Department, COPPE/UFRJ, Rio de Janeiro.
Chang, C. and Yao, X. (2011). Social network link predict based on af model. In Computer Science and Network Technology (ICCSNT), 2011 International Conference on, volume 1, pages 415–418.
Chelmis, C. and Prasanna, V. (2012). Predicting communication intention in social networks. In Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom), pages 184–194.
Corlette, D. and Shipman, III, F. M. (2010). Link prediction applied to an open large-scale online social network. In Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, HT ’10, pages 135–140, New York, NY, USA. ACM.
Costa, G. and Ortale, R. (2012). A bayesian hierarchical approach for exploratory analysis of communities and roles in social networks. In Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on, pages 194–201.
Cukierski, W., Hamner, B., and Yang, B. (2011). Graph-based features for supervised link prediction. In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 1237–1244.
da Silva Soares, P. and Bastos Cavalcante Prudencio, R. (2012). Time series based link prediction. In Neural Networks (IJCNN), The 2012 International Joint Conference on, pages 1–7.
de Sa, H. and Prudencio, R. (2011). Supervised link prediction in weighted networks. In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 2281–2288.
Dhote, Y., Mishra, N., and Sharma, S. (2013). Survey and analysis of temporal link prediction in online social networks. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on, pages 1178–1183.
Digiampietri, L. A., do Nascimento Santiago, C. R., and Alves, C. M. (2013). Predição de coautorias em redes sociais acadêmicas: um estudo exploratório em Ciˆencia da Computação. In II Brazilian Workshop on Social Network Analysis and Mining (BraSNAM 2013), page 12, Maceió, Alagoas, Brasil.
Digiampietri, L. A. and Maruyama, W. T. (2014). Predição de novas coautorias na rede social acadêmica dos programas brasileiros de pós-graduação em ciência da computação. In III Brazilian Workshop on Social Network Analysis and Mining (BraSNAM 2014), pages 243–248.
Digiampietri, L. A., Maruyama, W. T., Santiago, C. R. N., and da Silva Lima, J. J. (2015). Um sistema de predição de relacionamentos em redes sociais. In XI Simpósio Brasileiro de Sistemas de Informação (SBSI 2015), pages 139–146.
Dong, Y., Ke, Q., Rao, J.,Wang, B., andWu, B. (2011a). Random walk based resource allocation: Predicting and recommending links in cross-operator mobile communication networks. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on, pages 358–365.
Dong, Y., Ke, Q., Rao, J., and Wu, B. (2011b). Predicting missing links via local feature of common neighbors. In Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on, volume 2, pages 1038–1042.
Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N., Rao, J., and Cao, H. (2012). Link prediction and recommendation across heterogeneous social networks. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 181–190.
Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., and Elovici, Y. (2011). Link prediction in social networks using computationally efficient topological features. In Privacy, security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee third international conference on social computing (socialcom), pages 73–80.
Gao, S., Denoyer, L., and Gallinari, P. (2011). Temporal link prediction by integrating content and structure information. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM ’11, pages 1169–1174, New York, NY, USA.
ACM.
Gao, S., Denoyer, L., and Gallinari, P. (2012). Link prediction via latent factor blockmodel. In Proceedings of the 21st International Conference Companion on World Wide Web, WWW ’12 Companion, pages 507–508, New York, NY, USA. ACM.
Gomez Rodriguez, M. and Rogati, M. (2012). Bridging offline and online social graph dynamics. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pages 2447–2450, New York, NY, USA. ACM.
Guo, J. and Guo, H. (2010). Multi-features link prediction based on matrix. In Computer Design and Applications (ICCDA), 2010 International Conference on, volume 1, pages V1–357–V1–361.
Hasan, M. and Zaki, M. (2011). A survey of link prediction in social networks. In Aggarwal, C. C., editor, Social Network Data Analytics, pages 243–275. Springer US.
Hasan, M. A., Chaoji, V., Salem, S., and Zaki, M. (2006). Link prediction using supervised learning. In In Proc. of SDM 06 workshop on Link Analysis, Counterterrorism and Security.
Hsieh, C.-J., Tiwari, M., Agarwal, D., Huang, X. L., and Shah, S. (2013). Organizational overlap on social networks and its applications. In Proceedings of the 22Nd International Conference on World Wide Web,WWW’13, pages 571–582, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee.
Huang, J., Nie, F., Huang, H., and Tu, Y.-C. (2012). Trust prediction via aggregating heterogeneous social networks. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pages 1774–1778, New York, NY, USA. ACM.
Jamali, M., Huang, T., and Ester, M. (2011). A generalized stochastic block model for recommendation in social rating networks. In Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pages 53–60, New York, NY, USA. ACM.
Kamei, T., Ono, K., Kumano, M., and Kimura, M. (2012). Predicting missing links in social networks with hierarchical dirichlet processes. In Neural Networks (IJCNN), The 2012 International Joint Conference on, pages 1–8.
Kunegis, J., Preusse, J., and Schwagereit, F. (2013). What is the added value of negative links in online social networks? In Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13, pages 727–736, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee.
Kuo, T.-T., Yan, R., Huang, Y.-Y., Kung, P.-H., and Lin, S.-D. (2013). Unsupervised link prediction using aggregative statistics on heterogeneous social networks. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pages 775–783, New York, NY, USA. ACM.
Lerman, K., Intagorn, S., Kang, J.-H., and Ghosh, R. (2012). Using proximity to predict activity in social networks. In Proceedings of the 21st International Conference Companion on World Wide Web, WWW ’12 Companion, pages 555–556, New York, NY, USA. ACM.
Leroy, V., Cambazoglu, B. B., and Bonchi, F. (2010). Cold start link prediction. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 393–402, New York, NY, USA. ACM.
Liben-Nowell, D. and Kleinberg, J. (2003). The link prediction problem for social networks. In Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03, pages 556–559, New York, NY, USA. ACM.
Lin, Z., Yun, X., and Zhu, Y. (2012). Link prediction using benefitranks in weighted networks. In Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01, WI-IAT ’12, pages 423–430,Washington, DC, USA. IEEE Computer Society.
Lu, L. and Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6):1150 – 1170.
Lu, Z., Savas, B., Tang, W., and Dhillon, I. (2010). Supervised link prediction using multiple sources. In Data Mining (ICDM), 2010 IEEE 10th International Conference on, pages 923–928.
Makrehchi, M. (2011). Social link recommendation by learning hidden topics. In Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pages 189–196, New York, NY, USA. ACM.
Maruyama,W. and Digiampietri, L. (2016). Co-authorship prediction in academic social network. In BRASNAM 2016.
Murata, T. and Moriyasu, S. (2008). Link prediction based on structural properties of online social networks. New Generation Computing, 26(3):245–257.
Nie, F., Wang, H., Cai, X., Huang, H., and Ding, C. (2012). Robust matrix completion via joint schatten p-norm and lp-norm minimization. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 566–574.
Perez, C., Birregah, B., and Lemercier, M. (2012). The multi-layer imbrication for data leakage prevention from mobile devices. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference on, pages 813–819.
Quercia, D. and Capra, L. (2009). Friendsensing: Recommending friends using mobile phones. In Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09, pages 273–276, New York, NY, USA. ACM.
Shin, D., Si, S., and Dhillon, I. S. (2012). Multi-scale link prediction. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pages 215–224, New York, NY, USA. ACM.
Song, H. H., Cho, T. W., Dave, V., Zhang, Y., and Qiu, L. (2009). Scalable proximity estimation and link prediction in online social networks. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, IMC ’09, pages 322–335, New York, NY, USA. ACM.
Song, H. H., Savas, B., Cho, T. W., Dave, V., Lu, Z., Dhillon, I. S., Zhang, Y., and Qiu, L. (2012). Clustered embedding of massive social networks. SIGMETRICS Perform. Eval. Rev., 40(1):331–342.
Steurer, M. and Trattner, C. (2013). Predicting interactions in online social networks: An experiment in second life. In Proceedings of the 4th International Workshop on Modeling Social Media, MSM ’13, pages 5:1–5:8, New York, NY, USA. ACM.
Tian, Y., He, Q., Zhao, Q., Liu, X., and Lee, W.-c. (2010). Boosting social network connectivity with link revival. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pages 589–598, New York, NY, USA. ACM.
Tylenda, T., Angelova, R., and Bedathur, S. (2009). Towards time-aware link prediction in evolving social networks. In Proceedings of the 3rd Workshop on Social Network Mining and Analysis, SNA-KDD ’09, pages 9:1–9:10, New York, NY, USA. ACM.
Valverde-Rebaza, J. and de Andrade Lopes, A. (2012). Structural link prediction using community information on twitter. In Computational Aspects of Social Networks (CASoN), 2012 Fourth International Conference on, pages 132–137.
Vasuki, V., Natarajan, N., Lu, Z., and Dhillon, I. S. (2010). Affiliation recommendation using auxiliary networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pages 103–110, New York, NY, USA. ACM.
Vasuki, V., Natarajan, N., Lu, Z., Savas, B., and Dhillon, I. (2011). Scalable affiliation recommendation using auxiliary networks. ACM Trans. Intell. Syst. Technol., 3(1):3:1–3:20.
Wang, C., Satuluri, V., and Parthasarathy, S. (2007). Local probabilistic models for link prediction. In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on, pages 322–331.
Wang, D., Pedreschi, D., Song, C., Giannotti, F., and Barabasi, A.-L. (2011a). Human mobility, social ties, and link prediction. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 1100–1108, New York, NY, USA. ACM.
Wang, E., Silva, J., Willett, R., and Carin, L. (2011b). Dynamic relational topic model for social network analysis with noisy links. In Statistical Signal ProcessingWorkshop (SSP), 2011 IEEE, pages 497–500.
Xia, S., Dai, B., Lim, E.-P., Zhang, Y., and Xing, C. (2012). Link prediction for bipartite social networks: The role of structural holes. In Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on, pages 153–157.
Yin, D., Hong, L., and Davison, B. D. (2011). Structural link analysis and prediction in microblogs. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM ’11, pages 1163–1168, New York, NY, USA. ACM.
Yu, X., Pan, A., Tang, L.-A., Li, Z., and Han, J. (2011). Geo-friends recommendation in gpsbased cyber-physical social network. In Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on, pages 361–368.
Zhang, C., Zhai, B. Y., and Wu, M. (2013). Link prediction of community in microblog based on exponential random graph model. In Wireless Personal Multimedia Communications (WPMC), 2013 16th International Symposium on, pages 1–6.
Zhong, E., Fan, W., Zhu, Y., and Yang, Q. (2013). Modeling the dynamics of composite social networks. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pages 937–945, New York, NY, USA. ACM.