Comparative Transcriptome Profiling of Maytenus ilicifolia Root and Leaf
Resumo
Plants produce a wide variety of compounds called secondary metabolites (SMs), which are extremely important for their survival. SMs have also medicinal applications, but as chemical synthesis is not economically viable, plant extraction is the mainly option. Different biotechnology strategies are applied to improve the yield of bioproduction of these compounds, but commonly without the desired results due the limited knowledge of biosynthetic and regulatory pathways. Maytenus ilicifolia, a traditional Brazilian medicinal plant from Celastraceae family, produces in both root and leaves three main classes of SMs: sesquiterpenics, flavonoids and quinonemethides. In this study, four cDNA libraries were prepared from root and leaf tissues. The de novo transcriptome included 109,982 sequences that capture 92% of BUSCO orthologs, presented an average length of 737bp and a GC content about 42% of. Function annotation analysis identified homology for 44.8% of the transcripts. Moreover, 67,625 sequences were commonly expressed in both tissues, while 1,044 and 1,171 were differentially expressed in root and leaf, respectively. In terms of SM, enzymes involved in “monoterpenoid biosynthesis” and “isoflavonoid biosynthesis" were identified in root while “flavonoid biosynthesis” and “Biosynthesis of alkaloids” in leaf.
Palavras-chave:
RNA-Seq, De novo assembly, Metabolic pathways
Referências
Coppede, J.S., et al.: Cell cultures of Maytenus ilicifolia Mart. Are richer sources of quinone-methide triterpenoids than plant roots in natura. Plant Cell Tissue Organ Cult. (PCTOC) 118(1), 33–43 (2014). 10/f56kq9
De Souza, L.M., Cipriani, T.R., Iacomini, M., Gorin, P.A.J., Sassaki, G.L.: HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. J. Pharm. Biomed. Anal. 47(1), 59–67 (2008). 10/c4vp7v
Devi, K., Mishra, S.K., Sahu, J., Panda, D., Modi, M.K., Sen, P.: Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus OPEN, 6(21026), 1–11 (2016). 10/f79vzf. Nature Publishing Group
Dziggel, C., Schãfer, H., Wink, M.: Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol. J. 12(1), 1–14 (2017). 10/f3tn87
Filho, W.B., Corsino, J., Bolzani, V.d.S., Furlan, M., Pereira, A.M.S., França, S.C.: Quantitative determination of cytotoxicFriedo-nor-oleanane derivatives from five morphological types of Maytenus ilicifolia (celastraceae) by reverse-phase high-performance liquid chromatography. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 13(2), 75–78 (2002). https://doi.org/10.1002/PCA.626
Guo, D., Kang, K., Wang, P., Li, M., Huang, X.: Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender. Sci. Rep. 10(1), 1–13 (2020). https://doi.org/10.1038/s41598-020-63950-4
Hansen, N.L., et al.: The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J. 89(3), 429–441 (2017). 10/f9qghw
Hartmann, T.: 10/bvxmg2
Jan, R., Asaf, S., Numan, M., Lubna, Kim, K.M.: Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11(5), 1–31 (2021). 10/gmk7dd
Li, W., et al.: De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin v in Celastrus angulatus maxim. BMC Genomics 20(1), 1–15 (2019). 10/gz2c
Liu, M.H., et al.: Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 16(1), 1–12 (2015). 10/f69r7v
Mariot, M.P., Barbieri, R.L.: Metabólitos secundários e propriedades medicinais da espinheira-santa (Maytenus ilicifolia Mart. ex Reiss. e M. aquifolium Mart.). Revista Brasileira de Plantas Medicinais 9(3), 89–99 (2007)
Paz, T.A., et al.: Proteome profiling reveals insights into secondary metabolism in Maytenus ilicifolia (Celastraceae) cell cultures producing quinonemethide triterpenes. Plant Cell Tissue Organ Cult. 130(2), 405–416 (2017). 10/gbpzrf
Périco, L.L., Rodrigues, V.P., de Almeida, L.F.R., Fortuna-Perez, A.P., Vilegas, W., Hiruma-Lima, C.A.: Maytenus ilicifolia Mart. ex Reissek pp. 323–335 (2018). https://doi.org/10.1007/978-94-024-1552-0_29
Pradhan, J., Sahoo, S., Lalotra, S., Sarma, R.: Positive impact of abiotic stress on medicinal and aromatic plants. Int. J. Plant Sci. 12(2), 309–313 (2017). 10/gz2g
Ramakrishna, A., Ravishankar, G.A.: Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 6(11), 1720–1731 (2011). 10/fx4rjw
Saddique, M., Kamran, M., Shahbaz, M.: Differential Responses of Plants to Biotic Stress and the Role of Metabolites. Elsevier Inc. (2018). 10/gz2h
Upadhyay, S., Phukan, U.J., Mishra, S., Shukla, R.K.: De novo leaf and root transcriptome analysis identified novel genes involved in Steroidal sapogenin biosynthesis in Asparagus racemosus. BMC Genomics 15(1), 1–13 (2014). 10/gb3gr4
Van Loon, L.C., Rep, M., Pieterse, C.M.: Significance of inducible defense-related proteins in infected plants. Ann. Rev. Phytopathol. 44, 135–162 (2006). 10/csvjsr
Vellosa, J.C., et al.: Antioxidant activity of Maytenus ilicifolia root bark. Fitoterapia 77(3), 243–244 (2006). 10/dzm4t9
Wink, M.: Introduction: biochemistry, physiology and ecological functions of secondary metabolites. Biochem. Plant Second. Metab. Second Ed. 40, 1–19 (2010). 10/b8sdms
Wink, M.: Secondary metabolites: deterring herbivores. In: Encyclopedia of Life Sciences, pp. 1–9, March 2010. 10/c65zd8
Wink, M., Schimmer, O.: Molecular modes of action of defensive secondary metabolites, vol. 39 (2010). 10/cpz4j7
Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang, Q.: Response of plant secondary metabolites to environmental factors. Molecules 23(4), 1–26 (2018). 10/gdrnqc
Younesi-Melerdi, E., Nematzadeh, G.A., Pakdin-Parizi, A., Bakhtiarizadeh, M.R., Motahari, S.A.: De novo RNA sequencing analysis of Aeluropus littoralis halophyte plant under salinity stress. Sci. Rep. 10(1), 1–14 (2020). 10/gz2m
Zhang, C., Yao, X., Ren, H., Chang, J., Wang, K.: RNA-Seq reveals flavonoid biosynthesis-related genes in pecan (Carya illinoinensis) kernels. J. Agric. Food Chem. 67, 148–158 (2018). 10.gz2n
De Souza, L.M., Cipriani, T.R., Iacomini, M., Gorin, P.A.J., Sassaki, G.L.: HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. J. Pharm. Biomed. Anal. 47(1), 59–67 (2008). 10/c4vp7v
Devi, K., Mishra, S.K., Sahu, J., Panda, D., Modi, M.K., Sen, P.: Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus OPEN, 6(21026), 1–11 (2016). 10/f79vzf. Nature Publishing Group
Dziggel, C., Schãfer, H., Wink, M.: Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol. J. 12(1), 1–14 (2017). 10/f3tn87
Filho, W.B., Corsino, J., Bolzani, V.d.S., Furlan, M., Pereira, A.M.S., França, S.C.: Quantitative determination of cytotoxicFriedo-nor-oleanane derivatives from five morphological types of Maytenus ilicifolia (celastraceae) by reverse-phase high-performance liquid chromatography. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 13(2), 75–78 (2002). https://doi.org/10.1002/PCA.626
Guo, D., Kang, K., Wang, P., Li, M., Huang, X.: Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender. Sci. Rep. 10(1), 1–13 (2020). https://doi.org/10.1038/s41598-020-63950-4
Hansen, N.L., et al.: The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily. Plant J. 89(3), 429–441 (2017). 10/f9qghw
Hartmann, T.: 10/bvxmg2
Jan, R., Asaf, S., Numan, M., Lubna, Kim, K.M.: Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11(5), 1–31 (2021). 10/gmk7dd
Li, W., et al.: De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin v in Celastrus angulatus maxim. BMC Genomics 20(1), 1–15 (2019). 10/gz2c
Liu, M.H., et al.: Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 16(1), 1–12 (2015). 10/f69r7v
Mariot, M.P., Barbieri, R.L.: Metabólitos secundários e propriedades medicinais da espinheira-santa (Maytenus ilicifolia Mart. ex Reiss. e M. aquifolium Mart.). Revista Brasileira de Plantas Medicinais 9(3), 89–99 (2007)
Paz, T.A., et al.: Proteome profiling reveals insights into secondary metabolism in Maytenus ilicifolia (Celastraceae) cell cultures producing quinonemethide triterpenes. Plant Cell Tissue Organ Cult. 130(2), 405–416 (2017). 10/gbpzrf
Périco, L.L., Rodrigues, V.P., de Almeida, L.F.R., Fortuna-Perez, A.P., Vilegas, W., Hiruma-Lima, C.A.: Maytenus ilicifolia Mart. ex Reissek pp. 323–335 (2018). https://doi.org/10.1007/978-94-024-1552-0_29
Pradhan, J., Sahoo, S., Lalotra, S., Sarma, R.: Positive impact of abiotic stress on medicinal and aromatic plants. Int. J. Plant Sci. 12(2), 309–313 (2017). 10/gz2g
Ramakrishna, A., Ravishankar, G.A.: Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 6(11), 1720–1731 (2011). 10/fx4rjw
Saddique, M., Kamran, M., Shahbaz, M.: Differential Responses of Plants to Biotic Stress and the Role of Metabolites. Elsevier Inc. (2018). 10/gz2h
Upadhyay, S., Phukan, U.J., Mishra, S., Shukla, R.K.: De novo leaf and root transcriptome analysis identified novel genes involved in Steroidal sapogenin biosynthesis in Asparagus racemosus. BMC Genomics 15(1), 1–13 (2014). 10/gb3gr4
Van Loon, L.C., Rep, M., Pieterse, C.M.: Significance of inducible defense-related proteins in infected plants. Ann. Rev. Phytopathol. 44, 135–162 (2006). 10/csvjsr
Vellosa, J.C., et al.: Antioxidant activity of Maytenus ilicifolia root bark. Fitoterapia 77(3), 243–244 (2006). 10/dzm4t9
Wink, M.: Introduction: biochemistry, physiology and ecological functions of secondary metabolites. Biochem. Plant Second. Metab. Second Ed. 40, 1–19 (2010). 10/b8sdms
Wink, M.: Secondary metabolites: deterring herbivores. In: Encyclopedia of Life Sciences, pp. 1–9, March 2010. 10/c65zd8
Wink, M., Schimmer, O.: Molecular modes of action of defensive secondary metabolites, vol. 39 (2010). 10/cpz4j7
Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang, Q.: Response of plant secondary metabolites to environmental factors. Molecules 23(4), 1–26 (2018). 10/gdrnqc
Younesi-Melerdi, E., Nematzadeh, G.A., Pakdin-Parizi, A., Bakhtiarizadeh, M.R., Motahari, S.A.: De novo RNA sequencing analysis of Aeluropus littoralis halophyte plant under salinity stress. Sci. Rep. 10(1), 1–14 (2020). 10/gz2m
Zhang, C., Yao, X., Ren, H., Chang, J., Wang, K.: RNA-Seq reveals flavonoid biosynthesis-related genes in pecan (Carya illinoinensis) kernels. J. Agric. Food Chem. 67, 148–158 (2018). 10.gz2n
Publicado
22/11/2021
Como Citar
SANTONI, Mariana Marchi; DE LIMA, João Vítor Félix; BICALHO, Keylla Utherdyany; DE SOUZA MOREIRA, Tatiana Maria; VALENTINI, Sandro Roberto; FURLAN, Maysa; ZANELLI, Cleslei Fernando.
Comparative Transcriptome Profiling of Maytenus ilicifolia Root and Leaf. In: SIMPÓSIO BRASILEIRO DE BIOINFORMÁTICA (BSB), 14. , 2021, Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 3-14.
ISSN 2316-1248.