Topological Characterization of Cancer Driver Genes Using Reactome Super Pathways Networks
Resumo
Cancer is a complex disease caused by genetic mutations categorized into two groups: passenger and driver. Contrary to passenger, drivers mutations directly impact oncogenesis. Drivers identification is a challenge in cancer genomics, frequently supported by statistical and computational methods. These methods utilize the increasing volume of molecular data related to cancer, gene interactions networks, and pathways. Reactome recently defined 26 Super Pathways that group genes responsible for essential biological processes. Pathways networks carry topological information relative to their biological functions that emerge from genes interactions. Since some pathways are more associated with cancer than others and all have distinct structures, this work aims to characterize cancer driver genes’ topological role in Super Pathways networks. We combine data from three different databases to create Super Pathways networks enriched with cancer driver genes information. Results show that Super Pathways networks have distinct topologies and particular roles for drivers. Drivers have significant differences in clustering, betweenness, and closeness centralities when compared to others genes. Attacks using random and intentional removal reveal a remarkable resilience in some Super Pathways networks. Attacks also reveal that drivers in the Programmed Cell Death pathway are more critical than hubs in keeping the network integrity. These distinguishable patterns associated with drivers can support the task of identifying and validate unknown drivers. In addition, recognize the topological role of drivers helps understand the impact mutations in these genes have on pathways structure.
Palavras-chave:
Cancer bioinformatics, Cancer drivers genes, Pathways, Protein interaction networks, Complex networks, Topological analysis
Referências
Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)
Bhatlekar, S., Fields, J.Z., Boman, B.M.: Role of hox genes in stem cell differentiation and cancer. Stem Cells Int. 2018 (2018)
Cutigi, J.F., et al.: Combining mutation and gene network data in a machine learning approach for false-positive cancer driver gene discovery. In: Setubal, J.C., Silva, W.M. (eds.) BSB 2020. LNCS, vol. 12558, pp. 81–92. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65775-8_8
Daum, H., Peretz, T., Laufer, N.: BRCA mutations and reproduction. Fertil. Steril. 109(1), 33–38 (2018)
García-Campos, M.A., Espinal-Enríquez, J., Hernández-Lemus, E.: Pathway analysis: state of the art. Front. Physiol. 6, 383 (2015)
Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)
Jalili, M., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. PLoS ONE 10(11), e0143111 (2015)
Jassal, B., et al.: The reactome pathway knowledgebase. Nucl. Acids Res. 48(D1), D498–D503 (2020)
Jin, M.H., Oh, D.Y.: ATM in DNA repair in cancer. Pharmacol. Ther. 203, 107391 (2019)
Khatri, P., Sirota, M., Butte, A.J.: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8(2), e1002375 (2012)
Laham-Karam, N., Pinto, G.P., Poso, A., Kokkonen, P.: Transcription and translation inhibitors in cancer treatment. Front. Chem. 8, 276 (2020)
Martinez-Jimenez, F., et al.: A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20(10), 555–572 (2020)
de Mello Pessoa, V.H., Ferreira, C.d.O.L.: Resilience and structure of metabolic networks. Proc. Ser. Braz. Soc. Comput. Appl. Math. 6(2) (2018)
Milenković, T., Memišević, V., Bonato, A., Pržulj, N.: Dominating biological networks. PLoS ONE 6(8), 1–12 (2011). https://doi.org/10.1371/journal.pone.0023016
Mishra, A.P., et al.: Programmed cell death, from a cancer perspective: an overview. Mol. Diagn. Ther. 22(3), 281–295 (2018)
Nussinov, R., Jang, H., Tsai, C.J., Cheng, F.: Precision medicine and driver mutations: computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Comput. Biol. 15(3), e1006658 (2019)
Oldham, S., Fulcher, B., Parkes, L., Arnatkevicute, A., Suo, C., Fornito, A.: Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE 14(7), e0220061 (2019)
Ozturk, K., Dow, M., Carlin, D.E., Bejar, R., Carter, H.: The emerging potential for network analysis to inform precision cancer medicine. J. Mol. Biol. 430(18), 2875–2899 (2018)
Reactome: Reproduction (2006). https://reactome.org/content/detail/R-HSA-1474165
Reactome: Chromatin organization (2011). https://reactome.org/content/detail/R-HSA-4839726
Reactome: Developmental biology (2011), https://reactome.org/content/detail/R-HSA-1266738
Repana, D., et al.: The network of cancer genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 20(1), 1–12 (2019)
Schuster-Böckler, B., Lehner, B.: Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488(7412), 504–507 (2012)
Shafi, A.A., Knudsen, K.E.: Cancer and the circadian clock. Cancer Res. 79(15), 3806–3814 (2019)
Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719–724 (2009)
Wu, G., Dawson, E., Duong, A., Haw, R., Stein, L.: Reactomefiviz: a cytoscape app for pathway and network-based data analysis. F1000Research 3 (2014)
Wu, G., Feng, X., Stein, L.: A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 11(5), 1–23 (2010)
Bhatlekar, S., Fields, J.Z., Boman, B.M.: Role of hox genes in stem cell differentiation and cancer. Stem Cells Int. 2018 (2018)
Cutigi, J.F., et al.: Combining mutation and gene network data in a machine learning approach for false-positive cancer driver gene discovery. In: Setubal, J.C., Silva, W.M. (eds.) BSB 2020. LNCS, vol. 12558, pp. 81–92. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65775-8_8
Daum, H., Peretz, T., Laufer, N.: BRCA mutations and reproduction. Fertil. Steril. 109(1), 33–38 (2018)
García-Campos, M.A., Espinal-Enríquez, J., Hernández-Lemus, E.: Pathway analysis: state of the art. Front. Physiol. 6, 383 (2015)
Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)
Jalili, M., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. PLoS ONE 10(11), e0143111 (2015)
Jassal, B., et al.: The reactome pathway knowledgebase. Nucl. Acids Res. 48(D1), D498–D503 (2020)
Jin, M.H., Oh, D.Y.: ATM in DNA repair in cancer. Pharmacol. Ther. 203, 107391 (2019)
Khatri, P., Sirota, M., Butte, A.J.: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8(2), e1002375 (2012)
Laham-Karam, N., Pinto, G.P., Poso, A., Kokkonen, P.: Transcription and translation inhibitors in cancer treatment. Front. Chem. 8, 276 (2020)
Martinez-Jimenez, F., et al.: A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20(10), 555–572 (2020)
de Mello Pessoa, V.H., Ferreira, C.d.O.L.: Resilience and structure of metabolic networks. Proc. Ser. Braz. Soc. Comput. Appl. Math. 6(2) (2018)
Milenković, T., Memišević, V., Bonato, A., Pržulj, N.: Dominating biological networks. PLoS ONE 6(8), 1–12 (2011). https://doi.org/10.1371/journal.pone.0023016
Mishra, A.P., et al.: Programmed cell death, from a cancer perspective: an overview. Mol. Diagn. Ther. 22(3), 281–295 (2018)
Nussinov, R., Jang, H., Tsai, C.J., Cheng, F.: Precision medicine and driver mutations: computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Comput. Biol. 15(3), e1006658 (2019)
Oldham, S., Fulcher, B., Parkes, L., Arnatkevicute, A., Suo, C., Fornito, A.: Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE 14(7), e0220061 (2019)
Ozturk, K., Dow, M., Carlin, D.E., Bejar, R., Carter, H.: The emerging potential for network analysis to inform precision cancer medicine. J. Mol. Biol. 430(18), 2875–2899 (2018)
Reactome: Reproduction (2006). https://reactome.org/content/detail/R-HSA-1474165
Reactome: Chromatin organization (2011). https://reactome.org/content/detail/R-HSA-4839726
Reactome: Developmental biology (2011), https://reactome.org/content/detail/R-HSA-1266738
Repana, D., et al.: The network of cancer genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 20(1), 1–12 (2019)
Schuster-Böckler, B., Lehner, B.: Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488(7412), 504–507 (2012)
Shafi, A.A., Knudsen, K.E.: Cancer and the circadian clock. Cancer Res. 79(15), 3806–3814 (2019)
Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719–724 (2009)
Wu, G., Dawson, E., Duong, A., Haw, R., Stein, L.: Reactomefiviz: a cytoscape app for pathway and network-based data analysis. F1000Research 3 (2014)
Wu, G., Feng, X., Stein, L.: A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 11(5), 1–23 (2010)
Publicado
22/11/2021
Como Citar
RAMOS, Rodrigo Henrique; CUTIGI, Jorge Francisco; DE OLIVEIRA LAGE FERREIRA, Cynthia; SIMAO, Adenilso.
Topological Characterization of Cancer Driver Genes Using Reactome Super Pathways Networks. In: SIMPÓSIO BRASILEIRO DE BIOINFORMÁTICA (BSB), 14. , 2021, Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 26-37.
ISSN 2316-1248.