Feature Importance Analysis of Non-coding DNA/RNA Sequences Based on Machine Learning Approaches

  • Breno Lívio Silva de Almeida USP
  • Alvaro Pedroso Queiroz UTFPR
  • Anderson Paulo Avila Santos USP / UFZ GmbH
  • Robson Parmezan Bonidia USP
  • Ulisses Nunes da Rocha UFZ GmbH
  • Danilo Sipoli Sanches UTFPR
  • André Carlos Ponce de Leon Ferreira de Carvalho USP

Resumo


Non-coding sequences have been gained increasing space in scientific areas related to bioinformatics, due to essential roles played in different biological processes. Elucidating the function of these non-coding regions is a relevant challenge, which has been addressed by several Machine Learning (ML) studies in various fields of ncRNA, e.g., small non-coding RNAs (sRNAs) and Circular RNAs (circRNAs). The identification of these biological sequences is possible through feature engineering techniques, which can help point out specifics in different types of problems with ML. Thereby, there are recent studies focusing on interpretable computational methods, i.e., the best features based on feature importance analysis. For that reason, in this study we have proposed to explore different features descriptors and the degree of importance involved for classification task, using two case studies: (1) prediction of sRNAs in Bacteria and (2) prediction of circRNA in Humans. We developed a general pipeline using hybrid feature vectors with mathematical and conventional descriptors. In addition, these vectors were generated with MathFeature package and feature selection techniques in both case studies. Finally, our experiments results reported high predictive performance and the relevance of combining conventional and mathematical descriptors in different organisms.

Palavras-chave: Machine learning, Small RNA, Feature extraction, Feature importance, MathFeature

Referências

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)

Amin, N., McGrath, A., Chen, Y.P.P.: Fexrna: exploratory data analysis and feature selection of non-coding rna. IEEE/ACM Trans. Comput. Biol. Bioinform. 1 (2021). https://doi.org/10.1109/TCBB.2021.3057128

Anastasiadou, E., Jacob, L.S., Slack, F.J.: Non-coding RNA networks in cancer. Nat. Rev. Canc. 18(1), 5–18 (2018)

Arnedo, J., Romero-Zaliz, R., Zwir, I., Del Val, C.: A multiobjective method for robust identification of bacterial small non-coding RNAs. Bioinformatics 30(20), 2875–2882 (2014)

Barman, R.K., Mukhopadhyay, A., Das, S.: An improved method for identification of small non-coding RNAs in bacteria using support vector machine. Sci. Rep. 7(1), 1–8 (2017)

Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotech. 37(1), 38–44 (2019)

Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., Lang, M.: Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 143, 106839 (2020). https://doi.org/10.1016/j.csda.2019.106839

Bonidia, R.P., et al.: A novel decomposing model with evolutionary algorithms for feature selection in long non-coding RNAs. IEEE Access 8, 181683–181697 (2020). https://doi.org/10.1109/ACCESS.2020.3028039

Bonidia, R.P., et al.: Feature extraction approaches for biological sequences: a comparative study of mathematical features. Briefings Bioinform. 22(5), bbab011 (2021). https://doi.org/10.1093/bib/bbab011

Bonidia, R.P., Sanches, D.S., de Carvalho, A.C.: Mathfeature: feature extraction package for biological sequences based on mathematical descriptors. bioRxiv (2020)

Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)

Chantsalnyam, T., Siraj, A., Tayara, H., Chong, K.T.: ncRDense: a novel computational approach for classification of non-coding RNA family by deep learning. Genomics 113(5), 3030–3038 (2021). https://doi.org/10.1016/j.ygeno.2021.07.004

Chen, L., et al.: Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection. Mol. Gen. Genomics 293(1), 137–149 (2018)

Chen, L., et al.: The bioinformatics toolbox for circRNA discovery and analysis. Briefings Bioinform. 22(2), 1706–1728 (2020). https://doi.org/10.1093/bib/bbaa001

Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD 2016, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785

Ekundayo, I.: OPTUNA Optimization Based CNN-LSTM Model for Predicting Electric Power Consumption. Ph.D. thesis, Dublin, National College of Ireland (2020)

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33(suppl_1), D121–D124 (2005)

Lin, L., Wang, D., Zhao, S., Chen, L., Huang, N.: Power quality disturbance feature selection and pattern recognition based on image enhancement techniques. IEEE Access 7, 67889–67904 (2019). https://doi.org/10.1109/ACCESS.2019.2917886

McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

Niu, M., et al.: CirRNAPL: a web server for the identification of circRNA based on extreme learning machine. Comput. Struct. Biotechn. J. 18, 834–842 (2020)

Noviello, T.M.R., Ceccarelli, F., Ceccarelli, M., Cerulo, L.: Deep learning predicts short non-coding RNA functions from only raw sequence data. PLoS Computat. Biol. 16(11), e1008415 (2020)

Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

Pisignano, G., Ladomery, M.: Post-transcriptional regulation through long non-coding RNAs (lncRNAs). Non-Coding RNA 7(2) (2021). https://doi.org/10.3390/ncrna7020029

Rice, P., Longden, I., Bleasby, A.: Emboss: the European molecular biology open software suite. Trends Genet. 16(6), 276–277 (2000)

Rong, D., et al.: Epigenetics: roles and therapeutic implications of non-coding RNA modifications in human cancers. Mol. Ther.-Nucleic Acids (2021)

Ross, B.C.: Mutual information between discrete and continuous data sets. PloS One 9(2), e87357 (2014)

Strobel, E.J., Watters, K.E., Loughrey, D., Lucks, J.B.: Rna systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr. Opin. Biotechnol. 39, 182–191 (2016). https://doi.org/10.1016/j.copbio.2016.03.019, systems biology - Nanobiotechnology

Tang, G., Shi, J., Wu, W., Yue, X., Zhang, W.: Sequence-based bacterial small RNAs prediction using ensemble learning strategies. BMC Bioinf. 19(20), 13–23 (2018)

Van Der Maaten, L., Postma, E., Van den Herik, J., et al.: Dimensionality reduction: a comparative. J. Mach. Learn Res. 10(66–71), 13 (2009)

Vitsios, D., Dhindsa, R.S., Middleton, L., Gussow, A.B., Petrovski, S.: Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning. Nat. Commun. 12(1), 1–14 (2021)

Wei, G., Zhao, J., Feng, Y., He, A., Yu, J.: A novel hybrid feature selection method based on dynamic feature importance. Appl. Soft Comput. 93, 106337 (2020). https://doi.org/10.1016/j.asoc.2020.106337

Yamada, M., et al.: Ultra high-dimensional nonlinear feature selection for big biological data. IEEE Trans. Knowl. Data Eng. 30(7), 1352–1365 (2018)

Zhong, L., Zhen, M., Sun, J., Zhao, Q.: Recent advances on the machine learning methods in predicting ncRNA-protein interactions. Mol. Genet. Genomics 296(2), 243–258 (2021)

Zhou, S., Li, X.: Feature engineering vs. deep learning for paper section identification: toward applications in Chinese medical literature. Inf. Process. Manag. 57(3), 102206 (2020)
Publicado
22/11/2021
DE ALMEIDA, Breno Lívio Silva; QUEIROZ, Alvaro Pedroso; SANTOS, Anderson Paulo Avila; BONIDIA, Robson Parmezan; DA ROCHA, Ulisses Nunes; SANCHES, Danilo Sipoli; DE CARVALHO, André Carlos Ponce de Leon Ferreira. Feature Importance Analysis of Non-coding DNA/RNA Sequences Based on Machine Learning Approaches. In: SIMPÓSIO BRASILEIRO DE BIOINFORMÁTICA (BSB), 14. , 2021, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 81-92. ISSN 2316-1248.